2015年11月の記事一覧

双曲面万華鏡

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.24] No.090
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
秋らしい日になりましたが,今年も慌ただしく過ぎて行きます.
皆様お変わりありませんか.
前号で双曲幾何平面(ポアンカレ円盤モデル)の正則分割(タイル張り)の話をしました.
そのような光景を万華鏡で作ってみることにします.
■コクセターの万華鏡
まず球表面(楕円幾何平面)の話から復習します.
球表面が球面正p多角形タイルで{p,q}のように張りつめられているとき,
1つのタイルの中を2p個の直角3角形に分割できます.
この直角3角形を鏡室とする万華鏡は“メビウスの万華鏡”です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/51/17096451/img_1_m?1447147230
直角3角形の内角は,それぞれ π/p,π/q,π/2で,この直角3角形を(p,q,2)と書きます.
ポアンカレ円盤の双曲幾何平面でも,双曲正p多角形で{p,q}のように張りつめられているとき,
1つのタイルを2p個の直角3角形に分割できます.
この直角3角形を鏡室とする万華鏡は“コクセターの万華鏡”です.
双曲面の{6,4}正則分割の場合の直角3角形(6,4,2)(赤い3角形)を図(左)に,
対応する“コクセターの万華鏡”の映像を図(右)に示します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/15/17104115/img_0_m?1447459606
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/15/17104115/img_1_m?1447459606
この3角形の2辺は平面鏡,残りの1辺は円盤のフ チに直交する円弧鏡よりなります.
しかしながら,この円弧鏡は,数学的には反転円として定義できるのですが,
現実の円柱鏡の反射には収差があるので,数学 の定義のようにはいきません.
従って,あまり鮮明な万華鏡映像にはなりません.

■(7,3,2)3角形によるコクセターの万華鏡
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/87/17106487/img_0_m?1447506664
(1){7,3}の正7角形タイル張り(赤) (2){3,7}の正3角形タイル張り(緑) (3)菱形タイル張り(青)
3枚鏡(直線鏡2枚,円弧鏡1枚)の万華鏡により
ポアンカレ円盤内の双曲平面は市松模様に塗られますが,
正7角形のタイル張り,正3角形のタイル張り,菱形タイル張り
などを見ることができます.

話はこの先,エッシャーの作品「極限としての円」シリーズに続きます.

0

双曲幾何平面のタイル張り

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.17] No.089
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
非ユークリッド幾何の双曲幾何平面を訪ねて見ようと思います.
エッシャーの作品で「極限としての円」シリーズを見たことがおありでしょうか.
円盤の世界で周辺に行くほど,どんどん小さくなって行く構図です.
この作品は双曲幾何のポアンカレ円盤モデルを使い,
円盤内の正則分割(コクセターの万華鏡)が基礎になっています.
正多角形タイルによるタイル張り(正則分割という)は,
双曲幾何平面の場合は無限にあります.
例として,{6,4}と{5,4}を掲載しますので,まずはご鑑賞ください.
 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/02/17100202/img_0_m?1447229525
(注)
ポアンカレの双曲幾何のモデルは,円盤の中にすべての宇宙があります.
宇宙の果て(円盤のフチ)に近づけば近づくほど自分もどんどん小さくなるので
いつまでたっても宇宙の果てに到達できません(無限の時間がかかります).

{6,4}は正6角形による双曲幾何平面の正則分割で,各頂点に4個の正6角形が集まっています.
円盤の中は双曲幾何の世界ですから,この世界の直線は円盤のフチに直交する円弧です.
正6角形の辺はすべて直線です.円盤の中に描かれた円弧は皆,縁と直交しており,
この世界ではすべて直線です.円盤の中の正6辺形はすべて同じ大きさです.
同様に,{5,4}の図は正5角形による双曲幾何平面の正則分割の例です.
 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/02/17100202/img_1_m?1447686193

例えば,赤い円弧で分けられた世界は左が大きく右が小さいようですが,
この円盤内の世界では同じ広さです.どちらの世界も無限に広い.
円弧は左右の世界を写し合う鏡です.鏡像は色が変るように市松模様に塗り分けました.

0

美術・図工 エッシャーの「極限としての円」★★

■エッシャーのトリック(引用先:コクセター論文)

M.C.エッシャーの「極限としての円」Circle limit IIIを鑑賞しましょう(図左).
この円盤内は双曲幾何の世界(ポアンカレの円盤モデル)です.
この円盤内を旅する人は,円の縁(世界の果て)に近づくほど時間がかかる.
つまり,[世界の果てに到達するには無限の時間がかかる]ようになっています.
この世界で定義される直線(最短時間で移動できる経路)は,円盤世界の縁で直交する円弧です.
エッシャー作品(図(左))の円盤は,魚の流れを示す白い線で分割された双曲面の
[4,3,4,3,4,3]分割のように見えますが,実は図(中)に示すような,黒い線で分割した{8,3}正則分割です.
白い線は,双曲幾何の円盤世界の縁に80°で交差し,直線ではないのです.
図(中)の正8角形の黒い線がこの円盤世界の直線であることは,図(中)に書き込んだ赤い円弧
(いずれも円盤縁で直交する円弧)を見れば理解できるでしょう.
 

 

 

 

 

 

 

 

 

 

双曲平面の正8角形タイルは,双曲平面の直線(円盤の縁で直交する円弧)で囲まれています.
タイルの大きさは円盤の縁に行くほど小さく見えますが,円盤内は無限に広い双曲幾何平面なのですべて同じ大きさです.
1つのタイルの中には4匹の魚がおり中心に4回軸があります.
正8角形の頂点には3回軸があり,魚の白い流れは3回軸の場所に集まっています.
エッシャーは{8,3}分割に用いる直線をわざと隠し,白い流れが分割であるようなトリックを見せます.
もちろん,白い流れの円弧(直線ではない)に関して鏡映対称はありません.

0

美術・図工 双曲面万華鏡(コクセターの万華鏡)★

■直角3角形(7,3,2) によるコクセターの万華鏡

正7角形のタイルは,直角3角形(7,3,2)[内角の組(π/7,π/3,π/2)の3角形のこと]の14個に分割できる.
直角3角形(7,3,2)を鏡室とする万華鏡を,コクセター万華鏡と呼びます.


 

 

 

 

 

 

 

 

 

(1) {7,3}の正7角形タイル(赤)張り. (2)   (1)の双対である{3,7}の正3角形タイル(緑)張り.(3) 菱形タイル(青)張り.

 

 


3枚鏡(直線鏡2枚,円弧鏡1枚)のコクセター万華鏡により,
ポアンカレ円盤内の双曲平面は市松模様に塗られます.
生じるタイル張りは,正7角形のタイル張り,正3角形のタイル張り,菱形タイル張り,に見えます.

 

0

美術・図工 エッシャー作品の生まれるまで★

■エッシャー作品の生まれるまで

 

 

 

 

 

 

 

 


コクセター               エッシャー
直角3角形(6,4,2)            直線魚のモチーフ    「極限としての円I」
双曲面の{6,4}分割を細分                       Circle Limit I

コクセターとエッシャーはオランダで開催された1954年の国際数学者会議で出会いました.
1958年にコクセターはこの分割を掲載した論文*をエッシャーに送り,
これがエッシャーの「極限としての円」の作品群を生むことになります.

*By S.H.M.Coxeter
Crystal Symmetry and ItsGeneralizations (published in the Transactions of the RoyalSociety of Canada in 1957).

 続く⇒ 極限としての円Ⅲ

0

美術・図工 コクセターの万華鏡★

■メビウスの万華鏡とコクセターの万華鏡

■楕円幾何平面の正則タイル張り
球表面が球面正p多角形タイルで{p,q}のように張りつめられているとき,1つのタイルの中を2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡は“メビウスの万華鏡”と名付けます.このときの直角3角形(鏡室)の内角は,それぞれ π/p,π/q,π/2で,この直角3角形を(p,q,2)と表記します.

■双曲幾何平面の正則タイル張り
ポアンカレ円盤の双曲幾何平面でも,双曲正p多角形で{p,q}のように張りつめられているとき,1つのタイルを2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡は“コクセターの万華鏡”と名付けます.
双曲面の{6,4}正則分割の場合の直角3角形(6,4,2)(赤い3角形)を図(左)に,対応する“コクセターの万華鏡”の映像を図(右)に示します.

 

 

 

 

 

 

 

 

 

 



■双曲面{6,4}分割の場合の“コクセターの万華鏡”を作る
双極面{6,4}分割の映像を,3角形の万華鏡で作るには,双曲面直角3角形(6,4,2)を用います.この3角形の2辺は平面鏡,残りの1辺は円盤のフチに直交する円弧鏡よりなります.この円弧鏡は,数学的には反転円として定義できるのですが,現実の円柱鏡の反射には収差があるので,数学の定義のように鮮明な万華鏡映像を作るのは困難です.

 

 

 

 

 

0

メビウス(1850)の多面体万華鏡

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.10] No.088
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今日は楕円幾何の世界である球表面のタイル張りを万華鏡で見て見ましょう.
シュレフリーの記号{p,q}は正p多角形が頂点でq個集まってできる正多面体を表します.
例えば,{5,3}は正5角形が各頂点で3つ集まっている正多面体(正12面体)を表します.
球面{p,q}多面体の面は球面正p-多角形です.
1つの球面正p-多角形タイルを2p個の球面3角形(p,q,2)に分割しましょう.
図は球面{5,3}多面体の例で,12個の面はすべて球面正5角形(黄色のタイル)から成ります.
1つの面は10個の球面三角形(5,3,2)(赤色タイル)に分割できます.
(注)3角形(p,q,2)とは,内角が(π/p,π/q,π/2)の直角3角形のことです.
球面幾何の世界では,直線は大円.球面正p-角形や球面3角形の辺はすべてこの世界の直線ですから,
大円です.球面三角形(5,3,2)の内角は,(π/5,π/3.π/2)で,内角の和は,(31/30)π>π とπを越しますが
楕円幾何の世界だからです(ユークリッド幾何の世界では3角形の内角の和はπ).
ユークリッド平面では{5,3}は隙間ができタイル張りにならないが,
球表面ではタイル張りができ,これをユークリッド幾何の世界で見ると立体になります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/51/17096451/img_1_m?1447081624
球面3角形(p,q,2)の各辺を中心から見込む平面を鏡として,3枚鏡(△OHK,△OKA,△OAH)の万華鏡を作り,
球面3角形(p,q,2)の外側から覗きこむと,球面{p,q}多面体が見えます.
以下に{5,3}多面体用の万華鏡の作り方を掲載します.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/568613/51/17096451/img_3_m?1447081624
(注)青色の3枚の3角形鏡(ただし,頂点Oの周りは半径2.5の円弧を切り取る)を組み立てる.図中の数字は長さ.

0

万華鏡と市松模様(平面群)

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.11.03] No.087
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
秋が深まりました.皆様お変わりありませんか.一寸,万華鏡の数学の話をしましょう.
万華鏡映像の美しさが我々の心をとらえるのは,空間の完全な対称性だけではありません.
時間の流れとともに映し出される「千変万化だが一度きり」の映像に,
生命を感じるからでもありましょう.
ワンドの中を降り行くすべてのガラス屑の運命は,運動方程式ですべて定まっているとはいえ,
ときおりカオスの起こる期待で目が離せません.
万華鏡は,対称性(秩序)とカオス(乱れ)の混在が魅力なのです.そして,
合わせ鏡が生みだす完全な秩序は,無限に繰り返される“結晶世界”に入り込んだようでもあります.
万華鏡 “カレイドスコープ”は,物理学者ブリュースター卿の特許(1817)[発明は1816年]
が起源です.特許には,2枚の合わせ鏡の交差角θ°が,360°を
偶数で割り切る角度にするということが書かれています.
今日はこの数学についてさらに考えて見ましょう.
■平面群と市松模様
本来の市松模様はチェス盤のように正方格子が交互に塗り分けられたものですが,
3角格子などの場合でも交互に塗り分けられていれば市松模様と呼ぶことにします.
Fig1 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_7_m?1446474652 
これらは皆,市松模様と呼ぶことになります.
万華鏡は鏡(位数2の対称操作)の組み合わせだけで作られます.
1回鏡で反射すると鏡像の向きは裏返っています.しかし,2回反射すると
鏡像の鏡像になり始めの向きと同じになります.
市松模様の黒-白は,物体のある鏡室タイル(グレイ色)と同じ向き="正置像”を黒;
“裏返像”を白に塗り分けています.

■正方形の鏡室の万華鏡がつくる市松模様
Fig2 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_8_m?1446474652
図(1)万華鏡の鏡室タイルをグレイの正方形とします.
鏡室のフチの赤線は鏡(4枚)です.
図(2)1回の反射で4個のタイルの裏返像(黄色)が生まれます.
図(3)2回の反射で,その外側に8個のタイルの正置像(緑色)が生まれます.
図(4)3回の反射で,その外側に12個のタイルの裏返像(黄色)が生まれます.
このようにして,鏡室タイルはその鏡像を全平面に広げて行き,
平面を市松模様で塗りつぶします.

■3角形の鏡室の万華鏡は市松模様をつくるか?
Fig3 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_9_m?1446474652
1.左図の鏡室3角形ABCは90°30°60°の3角形です.
各頂点で3角形が偶数個集まっています.3つの頂点のまわりはどれも市松模様ができており,
全平面が市松模様であることがわかります.
2.右図の鏡室3角形ABCは45°60°75°の3角形で,
AおよびBのまわりは3角形が偶数個集まりますが,Cのまわりでは偶数個あつまりません.
そのため,全平面では市松模様が出来ないことがわかります.
3.鏡映操作の集合が平面群を作っている場合は,全平面が市松模様になりますが,
逆に,市松模様が何処かで乱れているなら,その鏡の組み合わせは平面群が作れない場合です.
そのような万華鏡のもう一つの例を(Fig4)に示します.
Fig4 http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556602/27/17073327/img_2_m?1446474652

0