2015年6月の記事一覧

統計数理研究所オープンハウスの話題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.30] No.070
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
6月も末になりました.今年は梅雨らしい雨がありません.
皆様の方は如何でしょうか.いよいよ数学月間(7/22~8/22)
の月になりますね.
----------------
6月19日に統計数理研究所のオープンハウスがありました.
(統計数理研究所は立川にあります)
統計数理研究所には,
モデリング研究系,データ科学研究系,数理・推論研究系
の3つの系があり,各系にはそれぞれ3つのグループがあります.
オープンハウスでは,100件に近いポスター展示
(大学院生のポスター発表も27件含まれる)がありました.
午後は,「統計よろず相談室」や講演などがありこれも人気でした.
ポスターで興味深かったテーマを一つだけ紹介します.
--------------------------------------
電波干渉計の新たなイメージング法について,池田思朗准教授ほか

電波望遠鏡(アンテナ)を地球規模で複数個配置し,
各アンテナで受信する信号の相関処理をして,一つの仮想的な
巨大望遠鏡としたものを電波干渉計と呼ぶそうだ.
受光電波はcmオーダーのミリ波らしい.

(注)
* ALMA望遠鏡(チリ共和国北部にあるアタカマ砂漠の標高約5000メートル
の高原に建設される)は,66台以上の電波望遠鏡を並べ,
これらの受信データを組み合わせて一つの巨大な仮想望遠鏡とする.

* 赤外線に近い電波を「サブミリ波」波長=1~0.1mm,周波数=300GHz~3THz
少し波長が長い電波を「ミリ波」波長=10~1mm,周波数=30GHz~300GHz

ブラック・ホールからは光が来ないと思っていたが,
ブラック・ホールの口で生じるプラズマから光(電波)が来るそうだ.
この光を受光して,光源の像を得ると円環状で,
ブラック・ホールの穴の形が見えるらしい.

これは宇宙オーダーの話だが,物質からのX線散乱を観測して
物質の原子的構造(nmオーダー)を見る話と非常に似ている.
そこで,私になじみのある結晶の例で理解を試みようと思う.
結晶(物体)ρ(r)からでる散乱X線F(R)は,Fourier変換の関係にあり
F(R)=W・ρ(r), ここで,WはFourier変換の演算行列.
もし,F(R)がわかれば,逆変換ρ(r)=W^-1・F(R)で,
ρ(r)が求められる.しかし,実際に観測できるのは,
複素数F(R)の大きさ|F(R)|のみで,位相はわからない.
だから,位相の推定法が,結晶学の主要な課題になっている.
位相推定には,逆空間をNyquist周波数以上でサンプリングする
オーバーサンプリングの測定も最近やられるようになった.

(注)
* 我々のいる観測空間は,物体ρ(r)のFourier変換スペクトルF(R)
の観測をするので,逆空間(R-空間)と呼ばれる.
これに対し,物体のある空間を実空間(r-空間)と呼ぶ.

宇宙からの電波の受光では,位相は計測できるようだ.
問題は,受光アンテナを乗せている地球が,
観測空間(逆空間)内の限られた軌道上を動く(自転や公転)だけなので,
限られた逆空間のデータしか観測できないところにあるらしい.

位相はわかるにしても,圧倒的に狭い逆空間内の観測データだけから,
逆Fourier変換で光源の形を求める課題である.
つまり,F(R)を観測できずに,圧倒的にゼロの多い2次元行列Fo(R)
しか得られず,この2次元行列を逆Fourier変換し,
光源のイメージ(2次元画像)を得なければならない.
おそらく,観測スペクトルFo(R)とモデルイメージのFourier変換像W・ρ(r)
との差||Fo(R)-W・ρ(r)||が最小となるように最小2乗法でρ(r)を求める
と同時に,観測できなかった範囲の逆空間の推定値も決まるのだろう.
もしかして,このプロセスで,光源の中心対称性などの光源の形に関する
何らかの束縛条件を仮定して推定を進めるのかもしれない?

(注意)この解説は私の推測を補っています.
発表内容の詳細を全部把握したわけでないので
不正確な部分があることをお断りしておきます.

0

数学月間だより

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.23] No.069
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆数学と諸科学・産業技術との連携
日本学術会議シンポジウム,“礎(いしずえ)の学問:数学
-数学研究と諸科学・産業技術との連携”-が,日本数学会,
日本学術会議数学委員会の主催で,2006.05.17に開催された.
このシンポジウムの狙いは,先端数学研究と異分野
(社会,医学,諸科学,産業など)との連携研究の拠点づくりにある.
その後数回の成果報告会がもたれ,直近では
“数学は世界を変えられるか?「忘れられた科学:数学」から10年
-数学イノベーションの現状と未来”が,2015.04.16に開催された.
異分野の課題の中に,数学が適用できるニーズや,
新しい数学が生れるシーズを発見できるかも知れないのだが,
数学者側から積極的に異分野の課題を理解し,課題の数学的命題化に
力を貸すことが必要だとの意見が出ている.
現実の課題から数学の命題を抽出する所が一番難しいのであり,
数学者はこの段階にも積極的に関与すべきである.

◆数学月間テーマから見る数理科学のトレンド
数学月間は,数学の価値を社会が知ると同時に,
社会からの要請を数学側が知る機会でもある.
国内外の数学月間テーマのトレンドを見ると,ビッグデータや統計学,
複雑系や非線形,モデリングやシミュレーションの話題が増加した.
これらはすべてコンピュータを駆使した数値計算によって
可能になった分野である.具体例を2つ紹介する:
(1)エネルギーの保存される系は,オイラー-ラグランジュ方程式を
立てることができるのだが,一般にはこれは解けない.
物理演習で学んだものは,線形近似で解けるようにしたものだった.
そして,解けない一般の場合にも解の挙動は似たものだろうと想像していた.
しかし,これがだいぶ違う.1900年ポアンカレは,
独立な因果列からなる可積分の方程式はわずかで,
大部分の方程式は非可積分(干渉し合う因果列)であると警鐘をならした.
明日の一つの出来事には,今日の全ての出来事が反映される
-遠方の地で過去に起きた蝶の羽ばたきが,
この地の明日の大風を引き起こす要因になり得る「バタフライ・エフェクト」
の世界である.初期パラメータのわずかな違いで分岐が起きカオスが生じる.
これらは方程式を積分して関数で書き表すことは不可能だが,
コンピュータを用いた数値計算で現象の追跡が可能である.
モデリングとシミュレーションにより現実現象を理解する
「現象数理科学」がさまざまな分野で盛んである.

(2)アモルファス(ガラス)物質の記述にトポロジーが登場した.
結晶は周期的な構造であるので,並進群を核とする準同型写像で
無限に広がる空間を単位胞の中に還元でき記述は簡単である.
アモルファス材料は均一ではあるが周期性はないので
多数の原子を全部記述せねばならず困難である.
アモルファス材料の記述は,古くは動径分布関数による統計的記述であった.
しかし,この記述では,特性の大きく異なるアモルファス構造でも,
同様な動径分布関数を与えてしまう.
そこで,アモルファス構造を特徴づけるいくつかのトポロジー量の定義が
導入された.ガラス構造のネットワーク中に,何員環がどれだけ存在するとか,
ベッチ数や連結数などの特性量,さらにパーシステントホモロジー群
の計算がなされている,これにより詳細なアモルファス構造の記述ができる.
これらのトポロジー量は,大きな原子数のアモルファス構造モデルで,
シミュレーションにより決定された全原子の座標値のビッグデータを
土台にして導出される.

◆市民のための数学月間
完成された抽象的な数学は,取りつき難くそびえる巨大な山脈だ.
身の回りの課題にどのような数学概念が使われているかを具体的に知ると,
数学学習へのモチベーションが高まる.
欧米は日本に比べこのような啓蒙活動がとても充実している.
多くの数学者が,他の領域の科学者と共同研究をしているのは
日本も同様であるが.英国では数学研究の大学生を学校に派遣し,
研究内容を説明させる(大使計画).これは日本もぜひ見習ってほしい活動だ.
当協会の「数学月間」活動のような一般への啓蒙活動は,
成果が不明確なため国家的なプロジェクトから放置される傾向にある.
そして,危機意識のある数学愛好者によってボランテア・ベースの活動が
行われているのが現状である.

0

今年の数学月間お知らせ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.16] No.068
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆お知らせ
数学月間懇話会(第11回)
主催●日本数学協会,数学月間の会(SGK)
日時●7月22日,13:50-17:20
----
1.十年目の「数学月間」
 片瀬豊,高窪正明(SGK)
2.「サッカーボールの対称性を解くTopological Symmetry」
 細矢治夫(お茶の水女子大名誉教授)
3.繰り返し模様の観賞法
 谷克彦(SGK)
4.テーラー展開の話
 鈴木啓一(SGK)
ーーーー
会場●東京大学(駒場)数理科学研究科棟002号室
最寄り駅●京王井の頭線「駒場東大前」
参加費●無料
問合せ先●数学月間の会(SGK)
sgktani@gmail.com,谷克彦(SGK世話人)
直接会場においでください(開場13:30)

◆数学月間だより1
日本数学協会は,2005年に,7月22日--8月22日を数学月間と定めました.この期間は,数学の基礎定数 π(22/7=3.142..) とe(22/8=2.7..)に因みます.この期間に,数学への共感を高める活動が各地で盛んになるよう我々は応援しています.
数学が色々な分野で社会を支えていることを市民が知ることは,数学への共感の呼び起こしに直結します.逆に,社会が必要としている数学を数学者が知る--言い換えれば,異分野の課題の中に数学が適用できるニーズや新しい数学が生まれるシーズを見出す--ことも重要であります.

先ず隗より始めよで,SGKは毎年7月22日に数学月間懇話会を開催しています.
これまでのテーマを見て見ましょう.
(資料1)**********
◆数学月間懇話会10年の記録
第1回(2006.07.22)会場:シーボニア
数学月間のπとeの連分数展開,公開鍵暗号 山崎圭二郎
数学と社会                真島秀行
ゲストスピーチ             鈴木裕道
第2回(2006.08.06)会場:議員会館
財政再建と数学:TQC手法        (日科技連)
第3回(2007.07.22)会場:ルベソンヴェール
シミュレーション            谷口健英
第4回(2008.07.22)
数学月間  片瀬豊
ある数学者たちの物語   上野正
数学と基礎科学   谷克彦
秘宝-数学的オブジェの照明    岡本和夫,河野俊丈
第5回(2009.07.22)
宇宙のかたち            河野俊丈    
造血幹細胞移植データベースと統計   田渕健
生体情報のゆらぎとフラクタル性     河野貴美子
MRIの数学的原理 真島秀行
第6回(2010.07.22)
手と目で観賞,数学曲面と多面体     手嶋吉法
教育数学の試み             岡本和夫
第7回(2011.07.22)
サイバー世界のモデリング        北川源四郎
量子コンピューティングの考え方     荒井隆
米国MAM複雑系と日本の原発事故     谷克彦
第8回(2012.07.22)
物理化学の探検ー化学の中の数学の世界  細矢治夫
じゃんけんの必勝法を論じて統計的思考に 石黒真木夫
第9回(2013.07.22)
考える楽しみわかる喜び         水谷一
最小二乗問題の新解法と逆問題への応用  速水謙
数学祭り                谷克彦
第10回(2014.07.22)
人口の集合関数としての「民力指数」   松原望
スパゲッティを巡る旅          中西達夫
第11回(2015.07.22)
十年目の数学月間                  片瀬豊,高窪正明
サッカーボールの対称性を解くTopological Symmetry 細矢治夫
繰り返し模様の観賞法          谷克彦
テーラー展開の話                  鈴木啓一
注)第4回以降の会場は,数理科学研究科棟・東大駒場キャンバス

次号に続く

0

数楽しよう--鼎談

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.09] No.067
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
『数学 理性の音楽』,東京大学出版会(2015.4)刊行記念イベントが,
東京大学伊藤国際学術研究センター地下1階 ギャラリーにて開催された.
(6月8日,19:00-21:00)
同書の著者,東大名誉教授(岡本和夫・薩摩順吉・桂利行の三氏)による鼎談.

この書籍の副題は,自然と社会を貫く数学で,
まさに,数学月間のコンセプトが語られております.
ぜひ皆様が一読されることに期待し,ここでは書籍の内容には言及しません.
その代り,鼎談の内容を速報します(今夜,参加し帰宅したばかりでホットな情報です).
----------
鼎談は,岡本氏の「数学の3つの側面」
ー道具としての数学.言葉としての数学,対象としての数学--の話から始まりました.
著者の3氏は,奇しくも歴代の東京大学大学院,数理科学研究科長です.
数学の大学院が理学部から抜けて,駒場に大学院数理科学研究科が創設されたのが
1992年のことで初代の科長が岡本氏,次いで薩摩氏,桂氏でした.
本郷キャンバスの理学部から大学院だけ抜けて,駒場キャンバスに
大学院数理科学研究科が設立できたのは,教養学部の数学の歴史があり,
基礎科学科もあったので,環境が整っていたことがあったようです.

20世紀の数学は,抽象化・純化に進んだわけですが,これは数学を学び難くしています.
どうも,学生・生徒たちは数学を人間が作ったという気がしないそうです.
完成された体系がそこにある.どうして生まれたかなど考える余裕もないようです.
完成された数学はそびえたつ山脈のようでとりつきがたい.
数学月間でも数学が生まれる所から親しむことを薦めています.

数学は役に立つのかというのは愚問です.
すぐ役に立っこともあるし,何十年もの後で役に立っものもあります.
岡本氏の研究したパンルヴェ方程式はソリトンの研究に使われるし,
暗号(公開鍵.楕円曲線),デジタル信号の誤り訂正,などの例が出ました.
1900年に,ヒルベルトは23の問題を出し,数学は抽象化の方向に進みだします.
同年,ポアンカレも人力で計算できるところまで行き着き,非可積分の方程式の
性質を示しました.その先はコンピュータの出現を待たねばなりませんでした.
現在はコンピュータによる数値計算が盛んで,非線形やカオス,分岐理論も研究されています.
モデリングやシミュレーションの現象数理科学も盛んです.

私は数学と数理科学の違いを質問してみました.
数理科学は数学のように厳密な証明の手順がないのではないか.
それとも数理科学というのはコンピュータを用た数学であるのか.
などという漠然とした感じがあったからです.
結論は,どちらも同じである(ニュアンスの個人差はあるが)という事でした.

コンピュータで計算は万能かというと,そうでもないようです.
例として出されたのは調和級数:
1/1+1/2+1/3+・・・+1/n+・・・=lim_n→∞(log n)=∞
ですが,nをずいぶん先までたし行っても,対数ですから級数はなかなか∞にはなりません.

最後に岡本氏が面白い計算を提示しました.
方程式の問題より,数の問題の方が奥が深いということを象徴するためです:
2×3×5×7+11=13+17
2^2+3^2+5^2+・・・・+17^2=1+2+3+・・・・+36=666

0

講演会おしらせ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.02] No.066
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
日本数学協会・第14回総会および講演会のお知らせ
日時: 2015年 6月7日,
場所: 東京大学数理科学研究棟(駒場キャンバス)
11:30~12:30 総会
----------------------------------------
13:30~15:40 講演会
13:30~14:30
「十年目の数学月間,これまでとこれから」,片瀬豊・谷克彦(SGK)
14:40~15:40
「視覚と錯視の数学からアート,そして画像処理」,新井仁之(東京大学)
講演会にどうぞお気軽にご参加ください.
協会員は無料ですが,協会員外は参加費2千円かかります.

*******(私の話そうとしていること)*******
数学月間は,数学から社会を見ると同時に,社会からの要請を数学側が知る機会でもあります.
国内外の数学月間テーマのトレンドを見ると,ビッグデータや統計学,複雑系や非線形,
モデリングやシミュレーションの話題です.
これらはすべてコンピュータを駆使した数値計算によって可能になった分野です.
これまでの数学とは違う新しい数学分野が生まれているところと言えるかもしれません.
1900年ポアンカレは,独立な因果列からなる可積分の方程式はごくわずかで,
大部分の方程式は非可積分(干渉し合う因果列)であると警鐘をならしました.
明日の一つの出来事には,今日の全ての出来事の影響が反映される世界です.
遠方の地で過去に起きた蝶の羽ばたきが,この地の明日の大風を引き起こす要因の一つになり得る
「バタフライ・エフェクト」の世界です.
ちょっとした初期パラメータの違いでカオスが起きるかもしれません.
これらは方程式を積分して関数で書き表すことは不可能ですが,
コンピュータを用いた数値計算で現象の追跡ができます.
モデリングとシミュレーションにより現実の現象を理解する
「現象数理科学」がさまざまな分野で発展しています.

0