ブログ倉庫

ステレオ投影

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.04.11] No.162
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
桜が満開で,良い季節になりましたが,大変なことばかりがどんどん起きて,平気で過ぎ去っていきます.
今村復興大臣などあきれたもの.そんな大臣がぞろぞろ居ります.防衛大臣も,法務大臣も.
第一,首相自体が問題だらけで,展望のない状態だ.それなのに,NHKの世論調査(4/7~9に実施)によると,
内閣支持53%,不支持27%という.相変わらず信じられない数字だ.
今回の調査から,現状にあわせて固定電話だけでなく携帯も含めて,RDDを行ったそうで,
(私事ながら,固定電話を3月末で廃止しました)
2,219人に調査し,1,233人から回答を得た(回答率55.6%)という.
内閣支持の理由の選択肢が,相も変わらず,「ほかの内閣よりよさそう」,「実行力がある」,...云々.
これらは,死因は「心不全」というのと同じで,理由になっていない.
結局,調査項目間の因果関係を無視した矛盾した結論言いぱなしの調査になる.
答えようのない選択肢を並べられても回答に窮する.回答率が55.6%ということがそれを物語っているのではないか.
限定条件をつけなければ答えられないところだが,単純に反応した回答だけがサンプルに拾い上げられる.
これでは偏ったサンプルが集まっていると思える.
理由を明確にするには,具体的な施策・事実を列挙しておいて,その賛否を問うべきだと思う.
ーーーーーーーーーーーーーーーーーーーー

■ステレオ投影
球面を平面に写像する方法の一つが,ステレオ投影です.球表面を平面に写像したとき,
面積,角度の両方を保存することは不可能です.ステレオ投影は,角度を保存するので,
”等角写像”です.ただし,投影円の中心付近の面積に比べて中心から離れた周囲では面積が小さくなります.
このような地図を,きっと見たことがあるでしょう.地図の他に,
多面体の面や,多面体の対称要素の配置の記述などに,ステレオ投影は欠くことができません.
さらに,双曲幾何のポアンカレの円盤モデルの理解のために,ステレオ投影は必要です.
今回は,ステレオ投影の作り方だけ,簡単に説明します.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585160/76/17100276/img_6_m?1491828971

球の北極Nに視点をおき,球面上の点を南極Sでの接平面上に投影します.例えば,P→P'
赤道(青の大円)の投影像は基円.南半球の球面上の点は基円の内部に,
北半球の球面上の点は基円の外側に投影されます.

(注)投影面を赤道を含む面として,北半球の球面上の点は南極と結び,
南半球の球面上の点は北極と結び投影する流儀もあります.

■写像の性質
この写像は等角写像なので,円は円に写像されます.
(球面)⇔(平面)
 大円 ⇔ 基円上の直径両端を通る円弧
 小円 ⇔ 小円
等角写像なので角度は保存され,例えば,赤道に直交する小円(南半球球面上の部分,赤点線)は,
基円に直交する円(赤の円弧)に写像されます.

0

美術・図工 反転の利用ーパップスの定理★★

■反転の利用

反転の性質を使うと,パップスの定理の様な難しいものを簡単に証明できます.

このような図形はアルベロス
(靴屋のナイフ)といいます.
この中に面白い幾何学があります.

 

 

 

 

円弧αと円弧βに挟まれたア
ルベロスの領域に,互いに接す
るように円のチェーンω0, ω1,
ω2, … があるとき, 円ωnの
中心と直径ABとの距離は円ωn
の直径のn倍である.
(パップスの定理)

 

 

 

 

 

[以下の証明ができます]
円ω2の中心は,線分ABから円ω2の直径の2倍だけ離れていること.
① 点Aから円ω2へ接線を引く.両接点を通りAを中心とする円γは,円ω2
と直交します.(なぜなら,円の接線は接点での半径と直交するから)
② γを反転円にして,色々なものを反転してみましょう.
円ω2 は自分自身に.円α,β は,それぞれ 直線α’,β’に,
円ω1,ω0 は,それぞれ円ω1’,ω0’に,なります.
③ 円ω2,ω1’, ω0’の直径はすべて同じだから,パップスの定理が証明
された. (なぜなら,平行な直線α‘とβ’に挟まれているから)

0

美術・図工 円による反転の性質★★

■円による反転鏡映の性質
①反転円の円周上の点は,反転しても元の点と同じ位置.
②反転では,円は円に変換される(直線も半径∞の円の仲間)
下図に反転円(赤い円)による,反転鏡映の例を示します.
●図1・反転円Oと交差する円Cは,交差の2点を共有する円cに変換される.
●図2・反転円Oと直交する円Cは,自分の上に変換される.
円周に直交するような反転円で分断された円の2つの部分は,反転円によるそれ
ぞれの鏡像になる.
●図3・反転円Oの中心を通る円Aは,直線aに変換される.
特に,円Bが反転円Oと交差する場合は,交差する2点をよぎる直線bに変換される.
③反転円が直線なら,普通の鏡映像になります.
直線鏡の組み合わせで作られる映像は,良く知られた万華鏡です.
反転円を用いたアポロニウスの窓も拡張された万華鏡の映像と言えるでしょう.

0

イスラムの皿★

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.04.03] No.161
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
東京ジャーミイの玄関ホールの陳列棚に飾ってある美しい皿です.直径30cm程度です.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585013/91/17866691/img_0_m?1491141557

中心の花の周りに小さい花が6個配置され,中心に6回回転対称があります.
中心(花弁12枚)の大きな花の内部は12回対称[中心にある6回対称の絵は無視します]ですが,全域的には6回対称,周囲の6個の小さな花(花弁9枚)の内部は9回対称[中心にある5回対称の絵は無視します]ですが,全域的には3回対称です.
6回対称軸と6回対称軸の間,3回対称軸と3回対称軸の間には2回対称軸が生じます.
その他,図に実線で描いたように鏡映面があります.

https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/585013/91/17866691/img_2_m?1491141557


右側の図で水色に塗った部分が単位胞です.
この繰り返し模様は平面群P6mmの対称性で,この皿はこの繰り返し模様から,オレンジ色の円の内部だけを切り取ったものと解釈できます.

 

 

 

 

 

 

 

 

 

 

■それぞれの花の内部の局所的な対称性に言及しましょう.
中心の花の内部は,12回対称(その部分群としての6回対称は全域で通用),
周りの6個の花の内部は,それぞれ9回対称(その部分群としての3回対称は全域で通用)です.
繰り返し模様全域を支配する対称性で,12回対称や9回対称はあり得ませんので,
このような高い対称性が通用するのはそれぞれの花の内部だけですので,
あたかも,高次元宇宙からいろいろな宇宙の断面が2次元の皿の表面に投影されているようで,
不思議な魅力を感じます.

0

アポロニウスの窓1a

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.03.26] No.160a
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
本日配信した160号の図が2つとも開かないようです.失礼しました.
本文の部分だけ,再度発行いたします.本文はこちらをご覧ください.
*****************

このグラスのデザインは,こちら側の模様の円が凹レンズとして働き,
向こう側の模様の円を円内に縮小して映し出すので,アポロニウスの窓を思わせます.
(リュミナルク製グラス)
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/34/17969934/img_0_m?1490653362

■アポロニウスの窓(円の中に円を詰め込んだフラクタル)
アポロニウス(ユークリッドと並ぶ紀元前3世紀のギリシャの幾何学者)は,
3つの互いに接する円があるとき,これらの3つの円に接する円が2つ存在することを発見しました.
互いに接する3つの円(そのうちの1つが,他の2円を内部に含む外周円の場合もある)に,
接するような円の作図を繰り返して,外周円の中に円を詰め込みフラクタル構造ができます.
これをアポロニウスの窓といいます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/34/17969934/img_1_m?1490653362

■インドラの真珠とアポロニウスの窓
仏教では,「宇宙のすべてのものが,それぞれのものの原因になっていて,
どの一人にも,無限の過去からの無数の原因が反映されている」と考えます.
これはまさに複雑系の考え方です.
宮澤賢治の小品「インドラの網」は,宇宙に張りめぐらされたインドラの網目に置かれた珠玉が,
互いに映じ合い,かつ,自分自身も輝いているさまです.
インドラの網に置かれた真珠が互いに映じ合う光景を思い浮かべましょう.
自分自身に映り込む他の真珠の映像には,もちろん自分自身も映り込み,
さらにその自分の映像中にも世界全体が.....
球の中に球を詰め込みできる美しいフラクタル図形が,”インドラの真珠”(注)です.
この美しい図形は2次元では,「アポロニウスの窓」とも呼ばれます.
(注)”インドラの真珠”,D.マンフォード, C.シリーズ, D.ライト, 小森洋平 (翻訳),日本評論社

0

アポロニウスの窓1

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.03.28] No.160
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
もうすぐ桜の花見ですね.こちらでは,だいぶ咲いているようですが,ときどき寒い日が戻ってきます.
どうぞお体にお気をつけください.
私の所の固定電話は,RDDの世論調査のためにあるようなもの(実際にかかって来たことはない),
あとは,オレオレ詐欺(これもかかって来たことはない)と宣伝が来るだけなので,
高額な光回線とともに本日廃止をしました.
実際に使っているのは,携帯とWiMAXです.
昨年の,数学月間懇話会では世論調査を取り上げましたが,固定電話だけから抽出するRDD方式では
サンプルの偏りが生じるのは当然でしょう.安倍内閣の驚くべき支持率の高さも現実とはかけ離れているようです.
■はじめに,お知らせですーーーーー
数学と社会の架け橋=数学月間(7/22~8/22)
数学月間懇話会は,毎年数学月間の初日7/22に実施しています.
ことしの7/22は,土曜日です.7/22が土曜日になる確率は1/7です.
365/7(mod7)=1ですから,毎年,曜日は1つづつずれます(去年は金曜日でした).
(注)ただし,うるう年は考慮していません.
ことしは,幸運にも土曜日になりました(来年は,日曜日).
例年ならお仕事などで参加できない方もどうぞお出かけ下さい.
ーーーーーー記ーーーーー
数学月間懇話会(第13回)
7月22日(土),13:50-17:20,開場:13;30
東京大学(駒場),数理科学研究科棟002号室
参加費無料,直接会場にお出で下さい.
プログラム
1.視聴率調査の実際,森本栄一(ビデオリサーチ)
2.ブラックホールを見る,池田思朗(統数研)
3.星型正多面体の体積比較(模型も作るよ!),小梁修(osa工房)
(演題は仮題です)
17:30から,学内のイタリアントマトで懇親会をします(飲食は各人払い)
ーーーーーーーーーーーー
■これから,アポロニウスの窓(あるいは,インドラの真珠)について,3回に分けて取り上げようと思っています.
このグラスのデザインは,こちら側の模様の円が凹レンズとして働き,
向こう側の模様の円を円内に縮小して映し出すので,アポロニウスの窓を思わせます.
(リュミナルク製グラス)
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/34/17969934/img_0_m?1490618044

■アポロニウスの窓(円の中に円を詰め込んだフラクタル)
アポロニウス(ユークリッドと並ぶ紀元前3世紀のギリシャの幾何学者)は,
3つの互いに接する円があるとき,これらの3つの円に接する円が2つ存在することを発見しました.
互いに接する3つの円(そのうちの1つが,他の2円を内部に含む外周円の場合もある)に,
接するような円の作図を繰り返して,外周円の中に円を詰め込みフラクタル構造ができます.
これをアポロニウスの窓といいます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/34/17969934/img_1_m?1490618044

■インドラの真珠とアポロニウスの窓
仏教では,「宇宙のすべてのものが,それぞれのものの原因になっていて,どの一人にも,
無限の過去からの無数の原因が反映されている」と考えます.これはまさに複雑系の考え方です.
宮澤賢治の小品「インドラの網」は,宇宙に張りめぐらされたインドラの網目に置かれた珠玉が,
互いに映じ合い,かつ,自分自身も輝いているさまです.
インドラの網に置かれた真珠が互いに映じ合う光景を想像ください.
自分自身に映り込む他の真珠の映像には,もちろん自分自身も映り込み,さらにその自分の映像中にも世界全体が.....
「球の中に球を詰め込む」とできる美しいフラクタル図形が,”インドラの真珠”(注)です.
この美しい図形は2次元では,「アポロニウスの窓」とも呼ばれます.
(注)”インドラの真珠”,D.マンフォード, C.シリーズ, D.ライト, 小森洋平 (翻訳),日本評論社

0

星型小12面体(ケプラーの星型)

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.03.21] No.159
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ダ・ビンチの星型のうち,星型小12面体の話をしました.
これは,庭園美術館,朝香宮邸,姫宮の部屋の照明に使われている星型です.

もうすこし詳しく星型について,取り上げます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/02/17957102/img_0_m?1489885670
左の図は五芒星で星型多角形,右の図は正5角形で凸多角形です.
左の星型は5/2角形,右の正多角形は5角形と記されますが何故でしょうか.

頂点Aから出発して,五芒星の辺をたどるとA→C→E→B→D→A,
星型が閉じるまでに,辺の向きが2回転します.
つまり五芒星では,1つの頂点での辺の向きの回転角は,2×360°/5 です.
比較のために,正五角形の場合は,1つの頂点で360°/5だけ回転することを思い出しましょう.
この星型多角形を5/2と書くのは,2x360°/5=360°/(5/2)だからです.

http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/566714/02/17957102/img_1_m?1489885670
この星型多角形が頂点で5つづつ集まる{5/2,5}は,星型小12面体になります.
この星型は正12面体をコア(芯)にして,各正5角形の面の上に正5角錐が乗った形です.
星型の頂点は12個あり,正12面体の面に対応しますから,12個の頂点を結んでできる正多面体は
正12面体に双対な正20面体です.

■さて,この星型小12面体{5/2,5}は,プラトンの正多面体(正12面体)を芯にして,
その正5角形の面に正5角錐を貼りつけた形でした.
同様に,プラトンの正多面体(正20面体:正12面体に双対)を芯にして,
その正3角形の面に正3角錘(正4面体)を貼り付けてできる形は,星型大12面体{5/2,3}と呼ばれます.
これら2つの星型は,ケプラーの星型多面体とも呼ばれます.
序に,この2つの星型に双対な,{5,5/2},{3,5/2}はポアソンの星型と呼ばれます.

■星型小12面体は,五芒星の面Fが12枚,稜の数Eが30,頂点の数Vが12ですので,
F-E+V=-6(我々の知っているオイラーの多面体定理では2となるべき)となります.
これは星型小12面体の空間が,球の位相と異なり,穴が4つ空いた浮袋と同じ位相であるためです.

0

星型小12面体

■星型正5角形の頂点Aから始めて,A→C→E→B→D→Aと辺をたどり元に戻ると,1つの頂点で2×360°/5だけ辺が回転することがわかります.
この星型5角形を5/2と書くのは,2x360°/5=360°/(5/2)だからです.
この星型5角形が頂点で5つづつ集まる{5/2,5}は,星型小12面体になります.


イメージ 1

 

 

 

 

 


イメージ 2

 

 

 

 

 

■さて,この星型小12面体{5/2,5}は,プラトンの正多面体(正12面体)を芯にして,その正5角形の面に正5角錐を貼りつけた形です.
同様に,プラトンの正多面体(正20面体:正12面体に双対)を芯にして,その正3角形の面に正3角錘(正4面体)を貼り付けてできる形は,星型大12面体{5/2,3}と呼ばれます.これら2つの星型は,ケプラーの星型多面体とも呼ばれます.
序に,この2つの星型に双対な,{5,5/2},{3,5/2}はポアソンの星型と呼ばれます.
■星型小12面体は,五芒星の面Fが12枚,稜の数Eが30,頂点の数Vが12ですので,
F-E+V=-6(我々の知っているオイラーの多面体定理では2)となります.これは星型小12面体の空間が,球の位相と異なり,穴が4つ空いた浮輪と同じ位相であるためです.

➡星型正多面体

0

マンデルブロ集合について

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.03.14] No.158
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
マンデルブロ(仏の数学者)は,「フラクタル」という概念の創始者(1975)です.
私たちは,ニュートンの微積分の発明以来,至る所で接線の引ける曲線を扱っていました.
フラクタル曲線というのは,これらと全く異なる曲線で,以下の性質があります.
・曲線のどんな小さな部分を拡大しても,自分全体と同じ形が現れる曲線.
・至る所ギザギザで接線が引けない曲線.

■マンデルブロ集合というのは,ちょっと変わったフラクタルです.
複素平面上で,次の漸化式を定義します.
Z(n+1)={Z(n)}^2+c, Z(0)=0
Z(n)やcは複素数で,cは定数,Z(0)は初期値といいます.

複素平面上の点cに対して,数列 Z(0),Z(1),Z(2),・・・・,Z(n),・・・ を計算していきます.
n→∞ のとき,|Z(n)|→∞ にならない(発散しない)ような
複素数cの全体が作る集合(図の黒い部分)が,マンデルブロ集合です.
面白い形をしていますが,拡大しても拡大しても(解像度を上げても)同じ構造が見えるフラクタル性があります.
(注)ある定数cに対して,数列が発散しない初期値Z(0)の集合を充填ジュリア集合といいます.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/568618/22/17112522/img_1_m?1487235969

発散しないということは,有限な値に収束するか,有限な範囲に振動するかです.
例えば,c=-1とすると,Z(0)=0,Z(1)=-1,Z(2)=0,Z(3)=-1,・・・・は振動です.
c=-1+iとすると,Z(0)=0,Z(1)=-1+i,Z(2)=-1-i,Z(3)=-1+3i,Z(4)=-9-5i,・・・・,これは発散です.
発散しなかったc=-1はマンデルブロ集合に入り,発散したc=-1+iはマンデルブロ集合に入りません.
このようにして複素平面を塗り分けて,奇妙な形のマンデルブロ集合が出来上がります.

しかしながら,この判別が難しい,始めのうちは有限に見えたものが,nが大きくなると発散するかもしれません.
しかし,際限なく計算するわけにはいきません.現実的な判定は近似j的で,例えば,n=200まで計算して,
ある閾値を越えなければ,発散しないと判定するわけです.
そして,マンデルブロ集合(黒い部分)の協会部分は発散するのですが,
発散のスピードにより着色してみます.抽象芸術のような不思議なパターンをご覧になったことがあるでしょう.
これは,c のわずかな差により,運命が劇的に変わるカオスと秩序が入り混じってフラクタルになっている世界です.
http://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/568618/22/17112522/img_0_m?1487235969

マンデルブロ集合をネット上でonlineで描かせるサイトが色々あります.
例えば,http://mandelbrot.ovh.org/ などを使ってみると面白いと思います.

0

マンデルブロ集合★7

(注)ここで載せた参照リンク先は,現在なくなっています.マンデルブロ集合の描画は,例えば, http://e-mandelbrot.com/ などで試すことができます.

マンデルブロ(仏の数学者)は,「フラクタル」という概念の創始者(1975)です.私たちは,ニュートンの微積分の発明以来,至る所で接線の引ける曲線を扱っていました.フラクタル曲線というのは,これらと全く異なる曲線で,以下の性質があります.
・曲線のどんな小さな部分を拡大しても,自分全体と同じ形が現れる曲線.
・至る所ギザギザで接線が引けない曲線.

■マンデルブロ集合というのは,ちょっと変わったフラクタルです.
複素平面上で,次の漸化式で定義される数列を考えます.
Z(n+1)={Z(n)}^2+c, Z(0)=0
Z(n)やcは複素数で,cは定数,Z(0)は初期値といいます.

複素平面上の点cに対して,数列 Z(0),Z(1),Z(2),・・・・,Z(n),・・・ を計算していきます.n→∞ のとき,|Z(n)|→∞ にならない(発散しない)数列が作れる複素数cの全体が作る集合(図の黒い部分)が,マンデルブロ集合です.
面白い形をしていますが,拡大しても拡大しても(解像度を上げても)同じ構造が見えるフラクタル性があります.
(注)ある定数cに対して,数列が発散しない初期値Z(0)の集合を充填ジュリア集合といいます.
http://mandelbrot.ovh.org/image.php?antialias=on&func=1&a=4&x1=-2&point=on&y1=1&x2=1&y2=-1&repeats=100&xZ0=0&yZ0=0&r=2&gen=1

 

 

 

 


発散しないということは,有限な値に収束するか,有限な範囲に振動するかです.
例えば,c=-1とすると,Z(0)=0,Z(1)=-1,Z(2)=0,Z(3)=-1,・・・・と数列は振動します.c=-1+iとすると,Z(0)=0,Z(1)=-1+i,Z(2)=-1-i,Z(3)=-1+3i,Z(4)=-9-5i,・・・・,この数列は発散です.発散しなかったc=-1はマンデルブロ集合に入り,発散したc=-1+iはマンデルブロ集合に入りません.このようにして複素平面を塗り分けて,奇妙な形のマンデルブロ集合が出来上がります.

しかしながら,実際はこの判別が難しい.始めのうちは有限に見えたものが,nが大きくなると突然発散するかもしれません.現実には際限なく計算するわけにはいきませんので,判定は近似j的で,例えば,n=200まで計算して,ある閾値を越えなければ,発散しないと判定するわけです.
そして,マンデルブロ集合(黒い部分)の境界外は発散するのですが,発散のスピードにより着色しています.このような抽象芸術のような不思議なパターンをご覧になったことがあるでしょう.これは,c のわずかな差により,運命が劇的に変わるカオスと秩序が入り混じってフラクタルになっている世界です.
http://mandelbrot.ovh.org/image.php?antialias=1&func=1&a=4&x1=-1.15625&y1=0.25&x2=-0.40625&y2=-0.25&repeats=100&xZ0=0&yZ0=0&r=2&gen=1


 

 

 

マンデルブロ集合をネット上でonlineで描かせるサイトが色々あります.
例えば,http://mandelbrot.ovh.org/ などを使ってみると面白いと思います.

0