ブログ倉庫

正方形の辺の1/nを作る

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.07] No.058
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
最近,我々のfacebook数学月間の会
https://www.facebook.com/sgk2014
に,Nishiyama氏から正方形の辺の長さの1/nを作る方法に関する
plusマガジンの以下の記事の紹介がありました.
https://plus.maths.org/content/folding-numbers?nl=0
皆様,正方形の折り紙を用いて試してみてください.
plusマガジンの記事は,下図の中に生じる黄色い2つの3角形が
互いに相似であること,直角3角形である(三平方の定理が成立)こと
https://plus.maths.org/content/sites/plus.maths.org/files/articles/2015/haga/hagak.jpg

を用いて,次の関係式を導びきます.
$$y/2=k/(1+k)$$ 
この関係式に,$$k$$の値(位置)として,得られた$$y/2$$の値(位置)を
代入するたびに,次の$$y/2$$の値(位置)が求まります.
$$k=1/2$$ → $$y/2=1/3$$
$$k=1/3$$ → $$y/2=1/4$$
$$k=1/4$$ → $$y/2=1/5$$
  ......
このようにして繰り返せば,一辺の長さの$$1/n$$まで順番に作れます.
正方形の上の辺に$$k$$の位置をとると,右側の辺に$$y/2$$に位置が決まります.
このように続けると,$$1/2,1/3,1/4,・・・$$の位置が正方形の周りを
ぐるぐる周りながら順次現れるのが大変面白いです.
https://plus.maths.org/content/sites/plus.maths.org/files/articles/2015/haga/hagaki.jpg

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2015/haga/hagakj.jpg

さて,紙の形が長方形の場合は如何でしょうか?
手紙を3つ折りにして封筒に入れるときにこのようなことが必要になります.
長方形の辺の1/3を作る方法では,Takakubo氏からの以下の2通りの情報が
寄せられました.以下の図をご覧ください.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/61/16622661/img_1_m?1428237203
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/61/16622661/img_2_m?1428237203
これらは一般の長方形(辺の比が1:√2に限らない)で使えます.

0

桜の花の対称性

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.03.31] No.057
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今年も桜が咲きました.関東地方は良いお花見日和です.
皆様のまわりは如何でしょうか.満開の桜はいいですね.
桜吹雪も私は好きです.年に一度の良い季節です.
一斉に花だけ咲く桜は確かに異常です.闇を背景の夜桜は怖いようですし,
森の中でただ一人,満開の桜の中に居れば,坂口安吾の小説にもあるように
気が変になりそうですね.
桜の花は,見事な5回対称をしています.今回は花見の季節という事で
平面図形の5回対称を観賞しましょう.今回は気楽にご覧ください.

(1)点群
桜の花びらの対称性は正5角形の対称性と同じで,
点群でいうと記号5mで表現します.これは,5回回転軸と鏡映面mとから
生成される点群だという意味です.図を見て下さい.
赤い5角形は,正五角形の中心に立てた5回回転軸を示します.
赤い線分は鏡映面を示します.鏡映面が1つあれば,5回回転軸のために
5枚の鏡映面が生じ,これらの鏡映面の交線が5回回転軸になっています.
ここで生じる5枚の鏡映面はすべて同じ性質です.それは5回回転軸で
互いに変換されるべきものだからです.
(群論の本では,すべての鏡映面は同じ共役類に類別されると表現されます)
群という言葉を出しましたが,あまり気にすることではありません.
5回回転軸と1枚の鏡映面mの操作を組み合わせ,次々新しい対称操作を
生んでいくことを,どんどんやっていくと,それまでに得たものと
同じ対称操作になってしまうことがわかります.
点群5mの例では,異なるものは10個の対称操作で全てです.
これら10個の対称操作で点群5mの対称操作の集合は閉じているといい.
点群5mの位数は10だと言います.
群となる条件は,集合が閉じているだけではありませんが,細かい定義は省略し,
ここでは,5回対称軸とそれを含む1枚の鏡映面だけで
10個の対称操作が生まれ,それで閉じていることを鑑賞ください.
点群と書いているのは群5mは1点を不動点にするものだからです.
出発点となった5回回転軸と1つの鏡映面を点群5mの生成元と言います.

老婆心ながら注意をうながしたいのは,奇数回転軸の点群で点群に生じた
鏡映面はすべて同一の共役類に入り,5mなどと記述すことです.
5mmではありません.
偶数回転軸の場合は,例えば,2mmのように記述し,鏡映面は
2つの共役類に分かれます.これらの違いは共役類の類別のためで
結晶学の本にときどき誤りが見受けられますのでご注意ください.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/49/16607149/img_0_m?1427715627

(2)部分群
点群5m(位数10)の部分群に点群5(位数5)や点群m(位数2)があります.
部分群は上位の群の対称要素を落とすことで得られます.
操作mを落とすことで点群5が,操作5を落とすことで点群mが得られます.

(3)5回回転対称性は,並進と両立しない
均一な2次元平面を,互いに独立なベクトル a, b を用いて
na+mb となる格子点(n,m)で,デジタル化したものが結晶空間です.
すべての格子点(n,m)は同値ですから,結晶空間は周期的です.
ベクトル a, b を並進ベクトルと言います.格子点を多角形のタイル
で表現すると,平面のデジタル化は平面のタイル張りの問題になります.
ここで,正五角形のタイルでは隙間なく平面をタイル張りできないことを
確認しましょう.結局,結晶空間(今考察中のものは2次元ですか,3次元でも)
では5回対称性は存在し得ないことがわかります.

(4)フラクタルのタイル張り
正五角形でフラクタルのタイル張りをしてみましょう.
この図には隙間だらけですが,隙間をさらに2種類のタイルを使って
埋めることを考えるとペンローズのタイル張りが得られます.

(5)黄金比
正五角形の中に次々と組み込まれる小さな正五角形には,黄金比1:x 
が随所に表れています.そのため,たいへんまとまりの良い感じの
図形になります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/49/16607149/img_1_m?1427715627

http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/49/16607149/img_2_m?1427715627

0

通潤橋のアーチ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.03.24] No.056
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
私が通潤橋(熊本県上益城郡山都町)を訪れたのは,2007年10月のことでした.
22日は,午前中に潤徳小学校3,4年生36人に万華鏡づくりの授業,
午後は先生方と人形浄瑠璃注)観劇を経験しました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/16586128/img_4_m?1426898367
-----
注)人形浄瑠璃は,清和文楽館
http://seiwabunraku.hinokuni-net.jp/wp-content/uploads/img/about/s_06.jpg
で観賞しました.山都町の人形浄瑠璃の始まりは,江戸時代の嘉永年間(1850年ごろ)で,
山都町(旧・清和村)を訪れた淡路の人形芝居の一座から,
浄瑠璃好きな村人が人形を買い求め,技術を習ったのが始まりといいます.
清和文楽は農家の人々が農業の合間を縫って練習や公演を行い伝承されてきました.
良い話です.民衆の文化の高さに感激しました.三人で一体の人形を操ります.
首(かしら)と右手を操る「主遣い(おもづかい)」,左手を操る「左遣い」,
足を操る「足遣い」です.人形も触らしてもらいました.
-------------

■通潤橋
阿蘇山の南側のこの付近の地形は,島のように台地があり,台地から台地への移動が
大変で平家の落人が隠れ住むのに好都合だったようです.
台地(白糸台地)に農業用水を引くのが大変です.
水は台地のがけ下に汲みに行かなければなりません.
時の惣庄屋「布田保之助(ふたやすのすけ)」は,白糸台地に水を引くための
水路橋”通潤橋”を,肥後の石工たちの技術を用いて1854年に建設しました.
通潤橋は,石造りアーチ水路橋で,長さ75.6m,高さ20.2m。幅6.5m.
橋の上部にサイフォンの原理を応用した3本の石の通水管が敷設されています.
通潤橋の写真(放水事に撮影k.Tani)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/16586128/img_0_m?1426898367
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/16586128/img_1_m?1426898367

通水管の写真(撮影k.Tani)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/16586128/img_2_m?1426898367

長さ約127m.石をくりぬいた1尺(30cm)四方の函渠(圧力のかかる管水路).
管と管の繋ぎ目には,振動吸収と漏水防止のための漆喰(しっくい)が塗られている.
さらに,通水管には5~6ケ所に地震対策のための板(緩衝材)を挟んでいる.
→http://www.geocities.jp/fukadasoft/isibasi/tsujyun/tuusui.html
通潤橋は両側台地より低いので,サイフォンの原理で出口で水を押し上げています.
通潤橋の高さから流入側台地は7.5m高く,流出側台地は5.8m高い.
→http://www.geocities.jp/fukadasoft/isibasi/tsujyun/kaisetu.html
通潤橋は,今でも周辺の田畑を潤しています.
放水は,通水管に詰まった堆積物を取り除くために行うものです.

「通潤橋史料館」 に行くと,どのようにアーチ石橋を施工したかわかります.
川の中に写真のような木枠を大工が組んで石工が石を置きました.
アーチ橋の高さを台地の高さまで上げられなかった理由は,
この木枠をこれ以上の高さにする木材がなかったためという事です.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/28/16586128/img_3_m?1426898367

石橋の木枠を外す最終段階は,橋の中央に白装束を纏った布田翁が鎮座し,
石工頭も切腹用の短刀を懐にして臨んだといいます.

これから,アーチ曲線の数学の話をしようと思っています.
写真で見えるアーチ曲線を型どっている石の並びについてです.
アーチの頂点にある石を”かなめ石”と言います.
アーチ状に一列に並んだ石達は自分の重さで互いに締め付けあい安定になっておりセメントなど不要です.
それでも下の木枠を外すときは,とても心配で責任者は命がけだったでしょう.
ーーーーーーー

さて,石積の橋の形,アーチ曲線に関して考えましょう.
アーチの両側の根元はしっかり固定しなければなりませんが,
アーチの上の石の重さが重ければ重いほどアーチの石は互い押し合い引き締め合うので,
橋は大きな荷重に耐えられるのです.石積みは引張力に抗する力はないが,
石積の石に働く力はすべて圧縮力だけなので接着の必要はなく安定構造になります.
石は圧縮に強い材料ですからアーチ型の橋には最適です.ただし,アーチ根元の支点部には,
大きな水平力が発生するので,それとつり合う大きな水平反力が必要です.
山で挟まれた峡谷などはこの点では最適な立地条件でしょう.
通潤橋の根元をしっかり押さえつけている重そうな石積の写真を見てください.

■空き缶を積んで作ったアーチ
私が真剣に積んだのですが,できるのはどうしても缶5個のアーチまででした.
5個の缶で缶同志の接点は4点.すべての接点で同時につり合っていなければなりませんから,
とても難しいことです.もし,6個以上でアーチが出来た方は新記録です.ご一報ください.
缶の周りにラップを巻いていますが,摩擦力を増すためでアーチのつり合い条件を変えるものではありません.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/46/16586546/img_1_m?1426979031

ここから先は,釣合の5つの一次方程式を連立して解く線形代数の話になりますから
省略します.興味ある方は以下でご覧下さい.
http://blogs.yahoo.co.jp/tanidr/16586546.html

0

2重振り子の話題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.03.17] No.055
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
とうとう桜の花も咲きだしました.やるふりだけの中身のない政治や仕組みに呆れます.
メルマガくらいは,実質のある楽しんでいただけるものをと心がけようと思います.
ご希望コメントなどをお寄せください.

■振幅の大きな2重振り子の動画がyoutubeなどに色々あります.
大変滑稽な動きをしますのでまずご覧ください.
http://blogs.yahoo.co.jp/tanidr/16560015.html
にはインターネットから拾った2つの例を掲載しています.
第1の動画は実験,第2の動画はシミュレーション結果です.
なぜこのような話をするのかと言えば,
2重振り子は,振幅の小さいうちは,皆が見たことのある自然な振動をしますが,
ある程度以上の振幅になると,とても不自然な滑稽な動きになるからです.
振幅が大きいときは,始めのスタート位置(初期値)によって結果が変わることにも気づくでしょう.

■このような系(エネルギーが保存される)の運動は,
ラグランジュ関数(運動エネルギーと位置エネルギーの差)に対する
オイラー=ラグランジュ方程式を解けば決定できます.
ラグランジュ関数 L(x(t),x'(t),t)は,座標x(t),速度x'(t),時間tの関数です.
オイラー=ラグランジュ方程式というのは変分原理とも呼ばれ,
ラグランジュ関数の時間積分(これを作用積分といいます)が
停留値となるようなx(t)の経路を見つける方法です.
ここでは,代表して変数はx(t)しか記述していませんが,
実際は自由度の数だけ変数があり,
これと同じ数だけオイラー=ラグランジュ方程式ができます.
エネルギーが保存される系では,ラグランジュ関数は作れるのですが,
オイラー=ラグランジュ方程式は,一般に解けません(解を関数で書けません).
昔,私達が物理学で演習したのは,解のある特殊なケースばかりだったのです.
注)振幅の小さい範囲では,x(t)やx'(t)の2乗まで残す近似で,
線形な微分方程式の固有値問題に帰着します.
詳細はhttp://blogs.yahoo.co.jp/tanidr/16560687.html

■問題は振幅の大きいときの運動を知る方法です.
これは解析的な解が得られないので,
今日のようにコンピュータが使えるようになって数値計算ができるようになりました.
そのためのプログラムは,次のような手順です.
現在の位置と速度をx(n),x'(n)とします.
x(n),x'(n)から加速度x''(n)を得るのは,オイラー=ラグランジュ方程式を使います.
一方,x'(n+Δ)=x'(n)+x''(n)Δ, x(n+Δ)=x(n)+x'(n)Δ ですから,
x(n), x'(n), x''(n)から,時間ステップΔ後の x(n+Δ),x''(n+Δ)が更新できます.
このようにして,初期値から,逐一運動の様子を求めていきます.

■力学系を記述するラグランジュ方程式は存在するのだが,
解を関数で記述できない(解けない)方程式が大多数です.
系の運動を支配する法則(ニュートン力学)は明確なのに,
解が関数で記述できないのです.コンピュータによって
運動は逐一決定できますが,常識と違う予想もつかない挙動が起こる.
分岐やカオスです.このようなことを指摘したのはポアンカレでした.

・1766 オイラー「変分法の原理」
オイラー, ラグランジュ
・1800 ラグランジュ「解析力学」
エネルギー散逸がない系は,オイラー=ラグランジュ方程式が作れる
オイラー, ハミルトン, ヤコービ
・1900 ポアンカレ
可積分の方程式はごくわずか
大部分の方程式は非可積分(関数で記述できない)
ニュートンの法則に従う系の運動は,可積分と決めつけてはいけない.
------
可積分 → 予測可能,安定な軌道 互いに独立な因果列
非可積分→ カオス的       干渉し合う因果列

0

情報処理・パソコン 非可積分の方程式をコンピュータが解く

力学系を記述するラグランジュ方程式は作れるのだが,これが解けるとは限らない.
物理の演習では,解けるものしか扱わなかったのです.
実際の世の中は,解を関数で記述できない(解けない)方程式が大多数.
系の運動を支配する法則(ニュートン力学の方程式)は明確なのに,
解が関数で記述できないのだ.でも,コンピュータによる数値計算により,
運動は逐一決定できる.しかも,予想もつかない挙動が起こる.
このようなことを指摘したのはポアンカレでした.

1766 オイラー「変分法の原理」
オイラー, ラグランジュ

1800 ラグランジュ「解析力学」
エネルギー散逸がない系は,オイラー=ラグランジュ方程式が作れる
オイラー, ハミルトン, ヤコービ

1900 ポアンカレ
可積分の方程式はごくわずかで,大部分の方程式は非可積分(関数で記述できない)
ニュートンの法則に従う系の運動は,可積分と決めつけてはいけない.

可積分 → 予測可能,安定な軌道 互いに独立な因果列
非可積分→ カオス的       干渉し合う因果列

分岐理論

0