ブログ倉庫

トレミーの定理

トレミーは2世紀のギリシャの天文学者プトレマイオスのことです.地球中心の天動説を確立したので有名です.トレミーの定理を導きました.

トレミーの定理(Ptolemy's Theorem)とは,円に内接する任意の4角形 ABCD で,AB・CD+DA・BC=AC・BD が成立することです.高校の幾何ででてきた懐かしい定理です.

 

 

 

 

 

 

 

 

 

 

トレミーの定理を,以下のような特殊な円に内接する4角形=長方形に適用すると,ピタゴラスの定理 a・a+b・b=c・c が証明できます.この意味で,トレミーの定理はピタゴラスの定理の拡張定理と言えます.

 

 

 

 

 

 

 

 

さて,トレミーの定理の証明には,三角関数を使うなど色々な方法がありますが,素朴に,下図の2つの図に示す3角形の相似を用いてやってみます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

両辺を足し合わせると AB・CD+BC・DA=AC・(BP+DP)が得られます.

0

セミパラレル図形

<<KVANTIK>>, No.11, 2020; Фёдор Ниловフョードル・ニーロフより抜粋

https://kvantik.com/extra/parall/

セミパラレル図形

白い正方形は一斉にペチャンコにすると図形をコンパクトにできます.不思議ですね.

 

 

 

 

 

 

 

 

 

 

 

 

 

パラレルニクという多角形は,下図のどちらかの性質を持ちます.

 

 

 

 

任意の平行多角形はパラレルニクである.下図に示す例は5角形の平行多角形の例です.

 

 

 

 

 

 

 

次の図は,中央に任意の3角形(緑)があります.その外に白い正方形を3つ作ります.それら頂点は,6角形になり,その外に白い正方形を3つ作ると,また6角形が得られます.同じ色の多角形の面積はすべて等しく,4角形はすべて台形です.この定理は,2001年にアメリカの数学者D. DeTemple と M. Hudelsonが証明しました.

 

 

 

 

 

 

 

 

 

 

 

また,中央の3角形をどんな平行多角形に置き換えてもこの定理が成り立つことも発見しました.以下の図は,中央に平行4角形,平行5角形にした例です.

 

 

 

 

 

 

 

 

 

0

マルコフ連鎖

https://elementy.ru/nauchno-populyarnaya_biblioteka/435457/Kvantik_9_2020

«Квантик» No9, 2020に,アレクサンダー・ペレペチコによる次の問題があります:

1.サーシャは,1日2回,朝と夕方に,物忘れ治療薬を飲まなければならないのですが,忘れることもあります.続けて 2 回服用した後は,必ず忘れずに服用し,2 回服用しなかった後は,服用を忘れます.過去 1 日にちょうど 1 錠服用している場合は,次回服用する確率は1/2とします.

サーシャが,ある時点から完全に薬を飲むことを忘れてしまう確率はどれくらいありますか? ずっと飲み続けている確率は?

 

 

 

 

 

 

 

 

2.酔っぱらいは居酒屋と彼の家の間の道路に立ち,1 秒ごとに同じ確率でランダムな方向に道路に沿って 1m ステップします.家に着いたり居酒屋に着いたりすると,そこにとどまります.

家まで 3m,居酒屋まで 7mの距離にある場合,彼が帰宅できる確率はどれくらいですか.

 

0

リノイドの体積

https://elementy.ru/problems/

立方体の上の面の対角線にレールがあり,下の面の対角線(上の面の対角線とは直交)にもレールがあります.下のレールの端(頂点)と上のレールの中点(面の中心)とを結ぶ長さの「線分」があり,この線分(長さを変えない)の両端はレール上をすべることができます.線分が包絡線となり囲む図形(リノイド)の表面の形を推理してください.

立方体の1辺の長さを2aとすると,リノイド体積はいくらですか.

なかなか難しいですが,線分の動きを頭の中でシミュレーションした以下の図が参考になります.

 

 

 

 

 

 

 

 

 

 

 

立方体の1辺の長さを2aとすると,線分KFの長さはa√6です.
図のような,座標系で考えます:

 

 

 

 

 

 

 

 

 

 

$$K(x_{K} , 0, -a), F(0, y_{F} , a), M\left( x, y, z \right) $$とします.
$$\overrightarrow{KM}(x-x_{K} , y , Z+a), \overrightarrow{FM}(x, y-y_{F} , z-a)$$
なので,次の方程式が得られます.
$$\displaystyle \frac{x-x_{K } }{x}=\displaystyle \frac{z+a}{z-a}=\displaystyle \frac{y}{y-y_{F } }$$
これを解いて,  $$x_{K}=\displaystyle \frac{2ax}{a-z} , y_{F}=\displaystyle \frac{2ay}{a+z}$$
一方, $$\left\{ \begin{array}{@{\,} c @{\, } }
KF^{2}=x_{K}^{2}+y_{F}^{2}+4a^{2} \\[0mm]
KF=a\sqrt{6}
\end{array} \right. $$  ⇒  $$x_{F}^{2}+y_{F}^{2}=2a^{2}$$ であるので,$$x_{F} , y_{F}$$を代入して,
$$\left( \displaystyle \frac{2ax}{a-z} \right) ^{2}+\left( \displaystyle \frac{2ay}{a+z} \right) ^{2}=2a^{2}$$  ⇒ $$ \displaystyle \frac{2x^{2 } }{\left( a-z \right) ^{2 } }+\displaystyle \frac{2y^{2 } }{\left( a+z \right) ^{2 } }=1$$
このリノイドの水平(すなわち軸Ozに垂直)断面の方程式を得るためには, 
zの値を区間$$\left( -a, a \right) $$でスライスする. 
この方程式は,半軸に$$x=\left( a-z \right) /\sqrt{2}, y=\left( a+z \right) /\sqrt{2}$$を持つ楕円の方程式になる.
楕円の面積$$S$$は, $$S=\pi \cdot \displaystyle \frac{\left( a-z \right) }{\sqrt{2 } } \cdot \displaystyle \frac{\left( a+z \right) }{\sqrt{2 } }=\displaystyle \frac{\pi }{2}\left( a^{2}-z^{2} \right) $$
ゆえに,リノイドの体積$$V$$は, $$V=\displaystyle \frac{\pi }{2}\displaystyle \int_{-a}^{a}\left( a^{2}-z^{2} \right) dz=\displaystyle \frac{2\pi a^{3 } }{3}$$ 

 

 

 

0

PCR検査から有病率推定ver2(谷)

厚労省の公表値を用いて,日本の有病率を求めると0.6%,検査陽性率は5%程度です(5月14日時点).このデータを用いて,ベイズ推定を用いPCR検査結果の考察をします.PCR検査の感度$$a$$と特異度$$b$$により,この結果は大きく変わります.PCR検査の感度$$a$$と特異度$$b$$は,従来の定説の0.7と0.99よりはるか高い,0.95と0.9992であることが,最近の研究で知られています.

今日のPCR検査で$$+$$判定の者には,罹患(真陽性)と非罹患(偽陽性)があります.同様に,今日のPCR検査で$$-$$判定の者にも,非罹患(真陰性)と罹患(偽陰性)があります.つまり,今日,罹患となった者には,真陽性と偽陰性があります.そして,今日の罹患者の病気期間は11日間とすると,今日の罹患者は,11日間先まで罹患者であり続け感染源となります.これを有病罹患と定義します.今日の有病罹患者は,11日前から今日までの罹患者の累積となります.11日を過ぎれば,PCR検査$$-$$となり,回復非罹患者(今日の非罹患者+11日より以前の全検査数-累計死亡者)になるとします.ここで,PCR検査で$$-$$判定で,罹患であるのは,検査の確率の視点での話で,必ずしも,無症状の感染者と一致するものではありません.
日々発表される新規陽性(罹患)者数を累積すると,累積陽性者数になるので,差分としての新規陽性者数は,罹患率に似た傾向ですが,罹患率そのものではありません.ここで定義する有病罹患者は,日々の新規罹患者と病気期間(発症してから陰性になるまでの病気減衰関数$$A(t)$$)のコンボリューションとして得られます.
$$有病罹患者(T)=\displaystyle \int_{0}^{T}罹患者(t) \cdot A(T-t)dt$$

あるいは,$$現罹患者数=累積陽性者数-累積退院・回復者数-累積死亡者数$$で定義できます.

有病罹患者(現罹患者)


国内発生状況.厚労省(2021.5.15現在)

$$有病率(5.15現在)=有病罹患者数(5.15現在)/累積PCR検査数=5.8×10^{-3}$$
$$陽性率(5.15現在)=陽性者数(t)/PCR検査数(t)=5.2×10^{-2}$$

PCR検査の感度$$a$$と特異度$$b$$が与えられ,集団の有病率$$p(罹患)=x$$が与えられると,この集団で,PCR検査が+と判定されたとき罹患者である確率$$p(罹患|+)$$,および,-と判定されたとき罹患者である確率$$p(罹患| - )$$を推定できます.
$$p(罹患| + )=p\left( + |罹患 \right) \cdot p\left( 罹患 \right) /p\left( + \right) =a \cdot x/\left( a \cdot x+(1-b)\left( 1-x \right) \right) $$,
$$p(罹患| - )=p\left( - |罹患 \right) \cdot p\left( 罹患 \right) /p\left( - \right) =\left( 1-a \right) \cdot x/\left( (1-a)x+b \cdot \left( 1-x \right) \right) $$,

従って,この集団の陽性率を$$p( + )=y$$とすると,有病率は,以下のように表現できます.
$$p(罹患)=p(罹患| + )・y+p(罹患|-)・(1-y) $$
$$x=a \cdot x \cdot y/\left( a \cdot x+\left( 1-b \right) \left( 1-x \right) \right) +\left( 1-a \right) \cdot x\left( 1-y \right) /\left( \left( 1-a \right) x+b \cdot \left( 1-x \right) \right) $$

$$有病罹患者(T)=\displaystyle \int_{}^{}罹患者(t) \ A(T-t)dt$$
病気減衰関数$$A(t)$$の半減期はおよそ10日ですので,近似的に,有病罹患者数(t)は本日の罹患者数(t)の10倍としたもので,この等式が成立/

特異度は,$$b$$>0.99(0.999)との説もあり$$b=1$$として,$$a$$を求めると,$$a=5.2×10^{-2}/5.8×10^{-3}=8.9$$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=========================== 

■条件付き確率についての「ベイズの定理」とは次のように説明できます.$$p(Y|X)p(X)=p(X \cap Y)=p(X|Y)p(Y)$$ 
ただし,記号の意味は例えば以下の様です.
$$p(X)$$:$$X$$が起こる確率
$$p(Y|X)$$:$$X$$が起こり,かつ$$Y$$が起こる確率
$$p(X \cap Y)$$:$$X$$かつ$$Y$$が起こる確率
ベイズの定理は,$$X$$(原因)が起きた後で$$Y$$(結果)が起きる確率$$p(Y|X)$$と,$$X$$と$$Y$$を入れ替えた確率$$p(X|Y)$$を結び付ける定理です.

■PCR検査の精度
「新型コロナ検査,どれくらい正確? 感度と特異度の意味(酒井健司,朝日デジタル)」によると,以下のようです:
PCR検査の感度とは,罹患者がPCR検査で陽性(+)と正しく判定される確率のことで,あまり大きくなく0.7程度です.真の罹患者でもPCR検査で陰性(-)(偽陰性)と判定される確率が0.3程度あります.
検査の特異度とは,非罹患者を正しく陰性(ー)と判定する確率のことでかなり高く0.99程度です.従って,非罹患者を陽性(+)(偽陽性)と判定する確率は稀で0.01程度です.

有病率(現罹患者の比率)$$x$$が小さい集団では,非罹患者が大部分を占めるので,PCRで偽陽性の確率は0.01と非常に小さいとはいえ,PCRの偽陽性者数は多くなり,医療崩壊につながるという主張があります.しかしながら,陽性確定までにPCR検査は2度行われ,2度とも偽陽性となる確率は$$10^{-4}$$,1万人に1人です.さらに,抗原検査の併用もありますから,偽陽性の誤判定リスクは回避可能です.積極的にPCR検査の対象を拡大し,感染源となる無症状の罹患者を拾い出し早期隔離する道を閉ざすべきではありません.あるいは,PCR検査の感度のために偽陰性者をたくさん生むという主張もあります.確かに,検査数に比例する偽陰性者を出しますが,検査しない状況と変わりなく,PCR検査対象を拡大しない理由にはなりません.検査を拡大すれば,拾い出せる陽性者は検査数に比例して確実に増加します.

(注)罹患者とは,真に感染しており現在感染源となるものと定義します.これには,PCR検査で陽性(真陽性)と判定されるものと,陰性(偽陰性)と判定されるものとを含みます.非罹患者とは,もともと感染していないか,回復した感染者で,感染源とならないものです.非罹患者はPCR検査で陰性になるのが原則ですが,例外(偽陽性)も0.01あります.有病率=罹患者数/(罹患者数+非罹患者数) は,有病率の定義です.

 

 

 

 

 

■PCR検査の原理 
PCR(ポリメラーゼ連鎖反応)を利用して,わずか数分子のターゲットDNAから数ミリグラムのDNAに増幅する技術を,1983年にマリスが発見し1993年のノーベル化学賞を受賞しました.
RNAに対しても逆転写酵素によりDNAを合成し,DNAの複製反応が利用できます.ターゲットDNA鎖全体の複製ではなく,ウイルスを特徴づける断片の複製をします.これが,パウエル社が発表(1987)したRT-PCR技術です.PCR検査は,検体に含まれるCOVID-19ウイルスの微量なRNAから,逆転写酵素を用いて,cDNAを合成し,温度サイクル処理を繰り返し,cDNAを検出可能な濃度まで複製するというものです.このようなPCR検査の原理から,検体にわずかでもターゲットRNAが含まれていればいくらでも増幅できますが,含まれていなければ誤混入がない限り増幅物は全く生じません.すなわち,特異度の高い検査です. 

 

■有病率の考察
日本疫学会の定義によると,有病率とは,ある時点で,疾病を有している人(罹患者)の全人口にたいする割合です:
(定義)有病率=その時点の罹患者数/集団の人数
この有病率と混乱しそうな概念に,罹患率というものがあります:
(定義)罹患率=ある期間の新規感染者数/集団内の感染感受性のある人数 

毎日発表される,COVID-19の新規感染者数は,罹患率の概念に近いが,罹患率に換算するのに必要な分母の「感染感受性のある人数」が不明です.ワクチン接種などで,感受性のある人数が減れば罹患率は上昇します.もし,その日の検査数(偏りのあるサンプルで,恣意的変動はある)を分母にするなら,その日の陽性率が得られます.
日々の新規感染者数や検査数は,恣意的な変動があるので,7日の移動平均をとり陽性率を定義します.検査の対象集団は症状のあるものや濃厚接触者なので,サンプル集団には陽性側に偏りがあります.

有病率,罹患率,陽性率は,時間で変化する関数で,感染拡大の指標になりますが,それぞれ意味合いが異なります.大雑把に言うと,陽性率は有病率の差分のような統計量です.

公開データから計算できる有病率$$p(罹患) $$を以下の2通りで定義することにしました.
(定義1)本日の有病者数=累積陽性者数-累積回復者数-累積死亡者数
     本日の有病率=本日の有病者数/累積検査数

厳密に言うと,累積陽性者数には非罹患者の陽性数(偽陽性)も混じりますが,累積回復者数を減じるので,これは相殺すると思われます.

有病率の分子からは回復者などが除外されるので,陽性率=陽性者数/検査数よりも常に小さい値になります.

COVID-19の新規陽性者は,2週間隔離(症状の程度により,病院,宿泊施設,自宅などに)されますので,死亡者は無視して,本日の新規感染者は続く2週間は罹患者と見なされます[罹患期間を10日間とする見解もあります].そして,2週間後にPCR検査が2度陰性になれば回復者に入ります.そこで,死亡者を無視すると次の定義も成り立ちます.便宜的に,新規感染者とは新規陽性者と同義語とします(厳密にいえば,偽陽性者が含まれるのですが,除去の根拠となるデータがありません).

(定義2)本日の罹患者数=日々の新規感染者数を2週間前まで遡り総和.
正確には,陽性持続曲線を用いて,新規感染者数と陽性持続曲線のコンボリューションとなります.
陽性持続の半減する期間はほぼ10日です.

英国国家統計局(ONS)は,オックスフォード大学,マンチェスター大学,英国公衆衛生サービスNHS,ウェルカムトラスト,IQVIA,グラスゴー・ライトハウス研究所,バイオセンター・ミルトンケインズと協力して,イングランドでパイロット調査を2020年4月に開始し,8月からは,サンプルのサイズを拡大し2021年3月まで大規模調査をしました.英国の4地域ベースのランダムな世帯サンプリングをし,得られた偏りのあるサンプルを英国全人口に外挿するには,多層回帰および事後層別化(MRP)を用いました.同じ世帯に対し長期間のCOVID-19検査を実施(最初の4週間は毎週,その後は毎月の検査)し,症状の有無にかかわらずCOVID-19の有病率と罹患率を,ほぼリアルタイムで観測し,病気期間(陽性持続確率)の関数を得ました.PCR検査の感度$$a$$と特異度$$b$$についても新しい知見が報告されました:$$a=0.95(0.85~0.98)$$,$$b=0.9992$$.スワブ採取が適切な監督下で行われれば,自己採取でも医療従事者が直接採取した場合と同様に正確な結果になることがわかりました.

COVID-19 Infection Survey: methods and further information,26 March 2021

 

 

 $$p_{a}(t)$$

 

 

 

 

 

 

 ■陽性率の考察
$$t$$時点の陽性率($$t$$)は,その時点でCOVID-19の検査で陽性となった人の割合です。現在のCOVID-19感染症は、鼻と喉から採取した綿棒で、症状の有無にかかわらず、SARS-CoV-2が陽性であることを意味します。これは、発生率とは異なります。発生率は、特定の期間における新しいポリメラーゼ連鎖反応(PCR)陽性の症例のみの測定値です。

ここで,陽性率$$p(+)$$に用いるべき数値を検討します.恐らく,毎日発表される検査陽性率(7日の移動平均された新規感染者数/7日の移動平均された検査数)を用いるのが適当でしょう.これは感染者数の微係数のようなもので,感染流行の傾向をある程度反映し注目すべき数値です.しかし,検査対象の制限(偏りがあるサンプリング)があり,かつ,サンプル数は少ない状況にあります.東京都の場合は,全人口1,400万人の集団に対して,症状のある集団1,000人程度を毎日サンプリングしています.日々の検査陽性率の4月14日時点の,厚労省の全国データを用いて,(検査)陽性率,$$p(+)=0.06$$を採用することにします.

引用)
1.厚労省データ,東京都データ,
2.COVID-19 Dashboard by the CSSE at Johns Hopkins University 

■問題:以下の2つを推定しましょう.ただし,ベイズの定理を使います. 
事前確率として,有病率を$$ p(罹患)=x=0.003$$を用います.

(1)PCR検査で陽性と判定されたとき,罹患者(真陽性)である確率を求めなさい.この確率は,検査の「陽性的中率」と呼ばれます. 
$$p(罹患|+) =p( +|罹患) p(罹患) /p(+) =0.7x/(0.7x+0.01(1-x)) =$$
$$=7x/(6.9x+0.1)$$

(2)有病率を推定しなさい.
陰性と判定されたものの中に,見逃された罹患者(偽陰性)のいる確率は:
$$p(罹患|-) =p( -|罹患) p(罹患) /p( -) =0.3x/(0.3x+0.99(1-x)) =$$
$$=3x/(-6.9x+9.9)$$

集団の有病率$$x$$を変数に,$$p(患者|+)$$と$$P(患者|-)$$のグラフを示します.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

従って,全人口に対して推定される有病率は,陽性率$$p(+)$$,陰性率$$p(-)=1-p(+)$$とすると,
有病率$$=p(罹患|+) p( + ) +p(罹患|-) (1-p(+) )$$ なので,

事前確率として有病率$$x=0.003$$を用いた場合は,真陽性の確率0.174,偽陰性の確率0.0009で,さらに,陽性率$$p(+)=0.06$$を用いると,真陽性の罹患者に,見逃された罹患者(偽陰性)を加えた有病率は$$0.174×0.06+0.0009×(1-0.06) =0.011$$と推定されます.

■PCR検査数は十分か

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

引用)
3.https://ourworldindata.org/coronavirus-testing

 ここに引用したのは,検査陽性数/1日(横軸);検査数/1日(縦軸)の散布図で,日本(上)と英国(下)の例です.英国の散布図スケールは100万倍大きい(数値では30~20倍)のでご注意ください.散布図パターンを比較すると特徴的な違いがあります.時間とともに,右横あるいは右下がりに伸びる部分では,検査数が足りず陽性者の増加傾向を頭打ちにしている可能性があり,縦に伸びる部分では,陽性者を全部拾う十分な検査が行われているようです.英国の例を見ると,始めは,陽性者がたくさん出て検査数が間に合わないほどでしたが,現在は十分な検査数が確保されていることがわかります.日本の例では,検査数と陽性者数の増減が微妙なバランスにあり,英国のグラフに見られる検査数を増やしても陽性者数が一定となる部分が見られません.検査数を増やせば,陽性者数も増加する可能性があります.

COVID-19では,無症状の罹患者が感染源となることが知られています.症状のあるグループだけをサンプリング対象にした限定されたPCR検査では,無症状の感染源は抜け落ちています.自由に活動する無症状の感染源がどの程度のウエイトかも未知ですので,PCR検査のサンプリング対象の拡大をはかるべきです.

■継続的検査のイギリス流戦略

引用文献)

4.https://plus.maths.org/content/testing-testing-schools
5.Assessing the impact of secondary school reopening strategies on within-school COVID-19 transmission and absences: a modelling study,Trystan Leng,etal.

英国では3月8日に学校を再開するにあたり,接触者継続的検査SCTという対策を決めました.英国JUNIPERコンソーシアムの研究者達が,数学モデルを用いて種々の検査戦略のシミュレーションをした結果です.


クリスマス前(閉鎖前)の生徒は,学年別「バブル」の一員として学校に通っていました.ある生徒が陽性と判定された場合,その「バブル」内の全員が10日間の自己隔離になります.この戦略は,学校内はもとより周囲コミュニティ内の感染伝播も防げる利点がありますが,多くの学校で生徒を欠席させるという欠点があります.

生徒が学校に行けない日数を減らすために,イムノクロマトグラフィー(LF検査)を使用した新しい戦略(SCT検査)が提案されました.COVID-19の症例が特定されると,その「バブル」内の他の生徒は,①「10日間の自己隔離」か,②「7日の間,毎日LF検査を受けて,その日の検査が陰性ならば学校に通う」のどちらかを選択します.この戦略の目標は,多くの生徒たちが学校に通えるようにすることにあります.生徒は,学期の初めにLF検査を2回受け,陰性である場合にのみ通学します.

■イムノクロマトグラフィー検査

イムノクロマトグラフィー(LF検査)は,抗体が配置されたセルローズ膜繊維の端に,採取した検体を滴下し,検体中にCOVID-19の抗原があるなら,それが抗体と反応しながらセルローズ繊維を移動し所定位置でキャプチャーされ呈色します.

LF検査はPCR検査よりも感度が低いかもしれませんが,30分以内に結果が出ます.ウイルス量が最も多く,感染性が最も高いと考えられる時点(感染してから約5日後)には,LF検査でCOVID-19陽性となる確率は十分高い[LF検査は,感度も特異度も95%以上との説もあります]のです.人々が感染を避け家にいるだけという状況から,活動できるように,常に検査を続けフィードバックを行うSCT検査への転換をしました.

■数学モデルで介入をシミュレーション

COVID-19に感染した中学生の12ー31%が,症状を発症すると考えられており,発症すると無症候よりも感染性が高いのですが,無症候の感染力はよくわかりません.このように未知の不確実性があるので,シミュレーションのモデル作りでは,パラメーターに不確実性を採り入れ,点推定ではなく範囲を推定しています.

ダイソンのグループ(レンら)は,それぞれ200人の生徒からなる5つの「バブル」で構成されるモデルを作成し,色々な検査戦略:何もしない;学年グループを隔離;SCT検査;毎週の集団検査;両方検査の組み合わせ;のそれぞれを,7週間にわたって毎日の時間ステップでシミュレーションしました.

もちろん,「SCT検査と毎週の集団検査の組み合わせ」が,欠席日数と感染数の両方を減らす最も効果的な戦略です.

検査をすれば,無症候性のCOVID症例が多数特定できます.しかし,組み合わせ検査の戦略では,7週間の半期の終わりに,生徒1人は平均して25回の検査を受けます.検査費用もかかり,若者の同意が必要です.毎日子供たちの鼻に綿棒を突き刺すのは素晴らしいことではありません.それらはトレードオフにあります.この調査は,パンデミックの際に政府や学校の指導者が下さなければならない難しい決定を浮き彫りにしています.ライブパンデミックの前例のない挑戦に対処するには,数学モデルが活躍します.

英国はロックダウンを間欠的に実施しました.長期にロックダウンを続ければ感染は減りますが生活ができなくなります.どのくらいの期間のロックダウンをどのくらいの期間を空けて実施するのが良いかのトレードオフも,感染拡大モデルでシミュレーションしています.英国の100万人当たりのPCR検査数は日本の20倍~30倍もあります.パンデミックを乗り越え現在の有病率は日本より小さい値に下がっています.

実効再生産数を減少させるには,次の3つを減少させることです:①感染者が感染力を持つ期間,②感染者が1日当たりに接触する人数,③感染者の接触で感染する確率.感染→潜伏期間→発症期間→検査→隔離の期間内でCOVID-19は感染します.COVID-19は,潜伏期間でも感染し,発症のない無症状も感染力があることが判明しています.「感染者が感染力を持つ期間」を短くするには,検査で早く感染者(有症状,無症状とも)を見つけ早く隔離することです.

0

PCR検査の統計(谷)

検査陽性者数
日本国内(2021.03.23)

 

東京都(2021.03.17)

 

検体採集日と,判定確定日や発症日は医師判定までのタイムラグを含む.
検査数はPCRだけでなく抗原検査も含む.
*ジョンズ・ホプキンス大学,東京都,厚労省のデータを用いました.

・検査陽性率=陽性者数/検査数 はどのくらい?
上のデータより,国内では4.9%,東京都では6.5%と推定するのが適当であろう.

1.サンプリングの偏りが変化している
PCR検査を受診できるグループは限定されている.初期は,無症状者は検査対象外でした.その後,クラスター対策で局所的な検査対象になり,現在の対象者の限定は明確でないが,無症状者が増えているようだ.
状況に応じて対象カテゴリを広げるのは当然で,感染抑止のために無症状の有病者を把握することは必要である.感染疑いの濃いグループをサンプリングするので偏りがあるわけですが,この基準自体も変化している.
このように,統計のプラットホームが変化しているから,変化を時系列に並べて,単純に発生率の変化と解釈することはできません.

2.統計量の定義
日本疫学会の定義によると,集団の有病率とは,その時点で,疾病を有している人の集団人口にたいする割合.集団の疾病発生率(罹患率)とは,一定期間に発生した疾病者のその集団で疾病感受性のある人口にたいする割合です.
有病率(t)=疾病を有する人数(t)/集団人数(t)
発生率(t)=新規陽性者(t)/集団内の感受性のある人数(t)

 

毎日,発表される新規陽性者の数は,発生率に近い概念ですが,集団内の感受性のある人数が未知なので,発生率とは正確には同じではありません.
PCR検査陽性率=新規陽性者/検査数で定義しますが,これも,サンプル集合の偏りと変化のために,単純比較はできません.そのため,累積数の比でこれを定義することにしました.

本来,有病率や罹患率などの統計量の時系列での変化を論じるには,ランダム・サンプリングの検査であるのが原則です.
ランダム・サンプリングで行われた調査としては,厚労省が抗体検査を行ったことがありますが,東京都で陽性率が0.1%程度だったと思います(2020.6).現時点での陽性率(多分増加している)が知りたいです.
東京都の人口は約1,400万人,これまでの感染者累積11.7万人を用い,0.84%が抗体保有者率が見積もれます.

現時点の感染者=感染者累積ー回復者累計ー死亡者累計ですから,これを仮の有病者(t)と定義します.有病者(t)と新規陽性者(t)は同義語ではありませんが,比例すべきと予想します.しかし,推測される有病者数に対して,現在のPCR検査数で拾い上げられる陽性者は圧倒的に少ない.
PCR検査数の増加が必要な所以です.特に,無症状の有病者はPCR検査のサンプル集合から除外されているのも問題です.

いくつかの定義を明確にしたい
PCR検査陽性者は有病者と同じか?
有病者から無症状者が除外されるのは良くないだろう.どの時点で患者(罹患者)と呼ぶのか?

今後考慮すべき問題
無症状者も感染に寄与すること,PCR検査で陰性となる変異株の出現などあり,これらのパラメータをどう定義するか?実効再生産数には反映される.
感染拡大の結果やワクチン接種による持続的な抗体形成により,感受性のある人口を減少させます.

0

PCR検査から有病率推定(谷)

陽性率を,p(+)=累積陽性者数/累積PCR検査数と定義すると,東京都の2021.3.17までのデータや厚労省の公表データを用いて,陽性率は,東京都で約6.5%(全国で4.9%,厚労省)になります.しかし,PCR検査の感度と特異度の情報(酒井健司,朝日デジタルなど)を入れてベイズ推定し,陽性的中率p(罹患|+)や偽陰性率p(罹患|-)を求めました.

ランダム・サンプリングのデータがないので,罹患率(有病率)も陽性率に等しいと仮定せざるを得ませんでした.
注)日本疫学会の定義によりますと,有病率と罹患率は異なります.

有病率=ある時点における疾病を有する者の数/調査対象全数
罹患率=ある時点における発生新規患者数/感染感受性のある人数

罹患率は,集団内の感染感受性のある人数に対して定義されるので,2つの定義で分母が異なります.さらに,有病率でいう「ある期間で疾病を有する者の数」は,罹患率でいう「新規感染者の数」とは異なるわけですが,タイムラグを考慮すれば,どちらも同様な傾向と近似ができそうです.

ここでは,有病率と罹患率を同義語として扱いました.毎日発表される,新規感染者数は,罹患率とは異なりますがよく似た指標であります.

 

 

東京都の2021.3.17までの陽性者累計116,293人,検査実施累計1,779,950人を用い,現在の陽性率はx=6.5%程度(全国ではx=4.9%)程度と推定します.
ランダム・サンプリングではないし,データが不足しているので,罹患率(有病率)も陽性率に等しいと仮定します.

(注)ここで対象となるサンプル集合は,PCR検査を受診できる限定されたグループですので,ランダム・サンプリングではなく偏っており(発症条件が課さたグループ),その陽性率は一般集合より若干高値でしょう.また,サンプリング条件が感染状況とともに変化しているので,単純な時間変化の比較はできません.
================================
■条件付き確率についての「ベイズの定理」とは次のように説明できます.
p(Y|X)p(X)=p(X∩Y)=p(X|Y)p(Y)
記号の意味は例えば以下の様です.
p(X) Xが起こる確率
p(Y|X) Xが起こった後でYが起こる確率
p(X∩Y) XかつYが起こる確率
ベイズの定理は,X(原因)が起きた後でY(結果)が起きる確率p(Y|X)と,XとYを入れ替えた確率p(X|Y)を結び付ける定理です.
===============================
■PCR検査の精度
新型コロナ検査、どれくらい正確? 感度と特異度の意味(酒井健司,朝日デジタル)などにより,次のように仮定します.
PCR検査の感度とは,罹患者がPCR検査で陽性(+)と正しく的中する確率のことで,あまり大きくなく0.7程度といわれます.真の罹患者でもPCR検査が陰性(-)(偽陰性)となる(罹患者を取りこぼす)確率が0.3程度あるそうです.
PCR検査の特異度とは,非罹患者を正しく陰性(ー)と判定する確率のことで0.99程度です.非罹患者を陽性(+)(偽陽性)と判定するのは稀で0.01程度の確率ですが,非罹患者の割合が多い集団(罹患(有病)率が小さい集団)では,無視できない偽陽性数になります.

 

■これらの仮定の下で,以下の2つを推定しましょう.
ただし,ベイズの定理を使います.
罹患(有病)率をp(罹患)≡x,非罹患(非有病)率を1-xとします.
(1)PCR検査で陽性と判定されたとき,罹患者である確率を求めなさい.

 

青線グラフ

つまり,PCRの結果が陽性のときでも,その的中率はp(罹患|+)=83%(x=6.5%附近)程度です.
罹患していても,検査感度のため,検査の結果が陽性にならない偽陰性が30%あり,罹患者をとりこぼしている.
一方,検査の特異度が高いので,偽陽性率は0.1%と小さいにも関わらす,非罹患者の割合(1-x)が多い集団では,陽性判定中に占める偽陽性の数も無視できない.これらの原因のため的中率が低下します.
(2)罹患(有病率)を推定しなさい.
(陰性)判定されたものの中に見逃された罹患者のいる確率p(罹患|-)は,

 

赤線グラフ

陰性と判定されたものの中に見逃された患者である可能性は,p(罹患|-)=2%(x=6,5%の付近)ほどある.
従って,全人口のなかで推定される罹患(有病)率は,
p(罹患)=x・p(罹患|+)+(1-x)・p(罹患|-)

第1項:第2項=真陽性:偽陽性=5.40:1.87
x=6.5%のときには,陽性中に占める偽陽性の数は25%程度である.

 

 

0

数学が自然を記述する

物理の発展に先立ち,それが必要とする道具としての数学が,先回りして常に用意されていたという歴史観があります.
そのように言いたくなる事例は確かにたくさんあります.X線結晶学に先立ちすべての空間群が求められていたこともその例です.このような廻りあわせはドラマチックで面白いのですが,数学がすべてに先だってあるはずだと信じるのは妄想です.
ニュートンの微積分のように,現場が新しい数学の源泉であったことは多く,このような開拓場面に立ち会ったのは,
数学者ではなかった(物理学者,化学者,工学者,...様々,そして,新数学分野を開拓した後,彼らは数学者と呼ばれている).つまり,新しい数学の源泉の多くは,自然の現象の中にありました.

(注)ニュートンは,自分の研究に必要な道具としての数学(微積分)も開発しました
(ニュートンは謙虚にも自分は巨人の肩に乗っただけだといいました).
(注)ニュートンは,惑星の動きを理解するために新しい数学(微積分)を発明しなければなりませんでした.
このような19世紀は科学の発展局面で興味深い時期です.その後,偏微分方程式の理論が生まれ,
波の伝播,熱伝達を説明する最初の場の理論が構築されました.フーリエ,ラプラスのような数学者は、
この物理学を理解するために新しい数学を発明しました.
弦理論の現在は,このような興奮する局面にある.

自然(宇宙や現象)を数学は記述することができます.あたかも数学があって自然がそれに従って作られた
という反語的表現も実は同語反復です.数学が先にあってその通りに宇宙ができているわけではありませんが,
森羅万象の自然の中に数学も含まれるので,自然を記述する数学は存在するはずです.
人間も生命も自然の中に存在しますからやはり数学で記述されるはずです.
もし人間が宇宙に居なくてもそのような数学は存在すると私は思います.
ーーー
2004年5月のノーベル物理学賞を受賞したDavidGrossがモスクワを訪れ、弦理論と理論物理学の今後について講演し,
その時のインタビュー対談は,数学と物理学の協働テーマは啓蒙的で興味あるものです.

ーーーーー
20世紀の終わりに,新しいタイプの非常に緊密な協力(物理学者と数学者の間)が登場しました.
弦理論と場の量子論では,物理と数学が非常に密接に関連しています.

弦理論が非常にロシア的という理由は,物理学と一体となったロシアの数学者の伝統(オイラーに代表される)があるからです.
ゲルファンド,アーノルド,..など.

ハイゼンベルグが量子力学(行列力学とも呼ばれる)を発見したとき,彼は数学としての行列を知りませんでしたが,
今日では行列は大学の教養課程で教えられています.
弦理論の数学ツール経路積分も,時がたてば普及するでしょう.

1930年代に書かれた量子力学に関する最初の教科書を見ると,とてもひどいものです.教科書は時間とともに良くなります.
他の分野でもまったく同じことが起こっています.力学や電磁気学に関する最初の記事と教科書は非常に複雑でした.
アインシュタインが電磁気学を研究したとき,彼は苦労しました.今や学校で電磁気学を普通に習います.

私たちが自然や数学を発明していると言うのは間違っています.逆に,私たちは自然によって発明されました.
数学は,自然を理解し,その中で最適な生存を実現するためのツールとして,私たちが創造した言語から成長してきました.
だから数学は本質的に自然の一部であり,数学が自然を記述するのが得意です.

いつの日か,銀河の反対側にある別の文明とのつながりを確立するとしましょう.世界は1つしかないので,
宇宙人は私たちとほぼ同じ物理学を持つことに誰もが同意します.彼らは我々と同じ数学を持っているでしょうか?
一部の数学者はノーと言うでしょう.彼らは我々と全く異なる数学を発明する可能性はあります.
でもやはり,彼らの数学は私たちの数学と非常に似ていると思います.

■現代のコンピューターの数値計算能力は驚くべきもので,それらは理論物理学者の働く方法に強い影響を与えました.
多くの人はもはや微分方程式を解こうとはせず,単に数値的にシミュレートします.
例えば,スティーブン・ウルフラムはすべてを計算し尽くそうとします.

実際20〜30年前のデバイスの機能と比べると,今できることは驚くべきことのようですが,
コンピュータはまだそれほど賢くはありません.計算手法は幼児期に開発されたままです.
私たちが計算アルゴリズムについて話すときに使用または考えるすべてのコンピューターは古典的です.
量子コンピューターとコンピューティングのための量子力学システムを使用するプログラムを実装すれば,
従来のコンピューターよりも指数関数的に優れたパワーを得ることができることがすでに証明されています.

量子力学もパラドックスを背景に発生しました.一方では古典物理学であり,他方ではボーアの原子モデルであり,
このパラドックスは量子力学によって解決することができました.

弦理論の最も注目に値するアプリケーションの1つは宇宙論です.弦理論家は宇宙論者や天体物理学者と多くのことを話します.
宇宙論者たちは現在、ビッグバンとビッグバン自体の後の宇宙の発達の初期段階を理解しようとしています.
この分野では,私たちの関心のある領域が重なっています.
弦理論の他のアプリケーションもあります.特に,私たちが新しい数学を発見しているという事実.
この理論は科学の発展に不可欠なステップであり,量子力学と同じように多くの用途があります.
参考書:
リサ・ランドール,「ワープする宇宙―宇宙の隠された次元の謎を解き明かす」
バートン・ツバイバッハ,「弦理論の学生のための良い教科書」

0

断捨離はやりません

あけましておめでとうございます.
今年はcovid19の感染拡大で先行き不透明な年になりました.
皆様それぞれに悔いのない良い年になりますように.私も気を引き締めて全力で努力していこうと思っています.
新年を迎えましたが,今,私は荷物ゴミの中におります.年末に多くの荷物を,私のところへ運び込んだからです.何故そんなことになったのかと言うと,来週には,私の育った家の取り壊しが始まるからです.私は,小,中,高校も地元の公立学校に通い,大学も歩いて通える距離でしたので,引っ越しをしたことがありません.
私の育った家は,戦後に建てた始めは2部屋だけの小さなものでした.戦後の焼け跡はそのようなバラックばかりがありました.その後の70数年に増築や補強が行われましたが,ずっと同じところに住んだので,父母の物や私の物が山ほどで,高価な物は何一つありませんがそれぞれに思い出があります.そのため,大変気が進まない断捨離でした.9月のまだ暑い最中から週に2日程度通い荷物の整理を進めましたが,とうとう年末が来てしまい,選別の間に合わない残りを全部私のもとに運び込む羽目になったのです.

母は編み物が好きでした.私が小さいときに見た光景は,いつも頼まれた編み物をしている母の姿でした.母は田舎の女学校を出て東京にでて来ました.あるとき,下宿でネクタイを編んでいて、金色の絹糸を色合わして買うために,お店にそれを持参したところ,お店の主人が「見本でウインドウに飾りたい」といって買い上げてくれたそうです。「そう,恥ずかしいわね」と口では言ったものの,かなりいい値だったのでうれしかったそうです。松坂屋の斜め前の大きな糸やでのことでした。市役所で洋裁も習う時間があったようです.東都服装学校にも少し行ったそうです.兵隊さんの猿股を作るにも,糸を何センチも無駄にしないような時代のことでした.
私は子供の頃,毛糸を両腕に通して母の毛糸玉を巻くのを手伝いました.長い時間腕を上げて振っていると疲れるものです.セーター1着作るのに,20玉が必要と母から聞いていました.
母の遺ししセーターに毛糸の玉巻きを手伝いし幼き日の想い出

今回,母の残した毛糸の編み物や和服など,大きな7つの段ボールを田舎に送りました.田舎では使ってくれるそうです.
未使用の毛糸は友人の知るグループで使うというので差し上げました.

庭に私の分身のような樹齢70の枇杷の木があります.今,白い花を盛りとつけています.可哀そうですが,実をつけることなく今年は切られてしまいます.木は動けませんから.合掌
我食いし枇杷の種より育ちたる樹齢は七十の白き花盛る

 

 


物置に釣り道具を見て悔やまれる父の釣行につき合わざりし日々
父の軍隊手帳をウエブに公開し見知らぬ方に難読箇所の教えを受く

 

 

0

一つ火

 
■時宗総本山,遊行寺の御滅灯(おめっとう),一ッ火(ひとつび)は,11月27日の夕刻から行われます.

遊行寺のウエブサイトによると:-----
「一ッ火」は遊行寺年中行事の中で最も荘厳な法要です。順に灯火が消えていき、やがて完全な暗闇に包まれた本堂に幽音の念仏が響きます。そして暗黒の世界にただ一つ灯される新たな灯明が、光り輝く念仏の世界を本堂内に映しだします。
この法要には、「一年間の悪業を懺悔し、来年の善行を志す」という意味合いもあります。
なお、本年、主役である「報土役ほうどやく」は、藤澤清孝ふじさわせいこう(鎌倉市材木座來迎寺住職かまくらしざいもくざらいこうじじゅうしょく).「後灯役」は、望月輝山もちづききざん(総本山内近司そうほんざんないごんす)が務めます。
本年度は、新型コロナウイルス感染症対策のため、参拝人数を制限させていただきます。-----

 

本堂内の火が次々に消され、最後にこの大光灯を報土役が消し、後灯を後灯役が消します。この漆黒の闇のなかで十八念仏が始まり、報土役・後灯役は、火打ち石で火を起こします。一度目は空中で火花を散らす「見せ火」で、二度目で「火口箱」に火花を打ち込みます。打ち込まれた火は、闇からしだいに灯明へと移され、再び弥陀と釈迦の光明に照らされた世界が戻ってくることを表現します。-----

時宗のこの伝統行事は,京都,東山の西連寺でも行われていることをウエブで見ました.


現在、外灯も整備され夜遅くまで街の灯りも消えることもなく、「暗闇」の怖さや心細さというものを経験することも少ない。漆黒の闇につつまれた堂内で、徐々に明るくなっていく様を目の当たりして光の有り難さを経験することでしょう。

■2016年11月27日は,夕方からの雨でどんどん寒くなりました.私は,母の一周忌の折に,ご住職からお聞きしたばかりの「一ッ火」に参加してみようと思い,藤沢,遊行寺に出かけました.遊行寺は,落語(鈴振り)でも,箱根駅伝の中継でも,有名で知っていましたが,私が遊行寺に行ったのはこのときが初めてです.「一ッ火」は,5時に始まり9時近くまで行われました.外の雨は氷雨のようになり寒い夜でした.
「一つ火」の最後に,大僧正直々に全員(何百人でしょうか,例年より少ないそうです)が,お札をいただきました.その行列の長いこと.大僧正は97才.すごい大声でのお話,さすがです.(この方が,当時,運転免許返上で話題になった方ですね).
「一っ火」というのは,本堂のロウソク(それぞれ或るものを象徴して配置され,20~30本位ある)の火を,複雑な手順(方法や役回りがいろいろ)に法り次々に消して行き真っ暗に...,そして静寂.十八念仏が始まり,火口箱に火花を打ち込み,灯明に移されます.再び弥陀と釈迦の光明に照らされた世界が戻ってきます.念仏は美しい合唱の音楽になって響ます.

■大きな百目蠟燭*)の炎は長く伸びて明るい.じっと見ていると,炎はピタッと動かない.それが突然瞬き始める.また,ピタッとまる.これが周期的に繰り返されます.この自励振動の機構**)に感嘆して見入ってしまいました.実に面白い.まるで活きているように間欠動作をします.
面白い現象です.ロウソクの炎の瞬きと,静止が何故繰り返されるのだろうか?どちらの状態も安定でないわけで,この移り変わりが起こる理由を考え込んでしまったのです.


注*)大きな和蠟燭です.100匁目あるかどうか知りません.明るく点燈し,嫌な臭いもしません.和ろうそくはハゼの実などから作るようです.ハゼの実や和ろうそくのことなどをどなたかお書きください.
 むかしの むかしの かざみの とりの
 ぼやけた とさかに はぜのは ひとつ
 はぜのは あかくて いりひいろ
 ちいさい あき ちいさい あき
 ちいさい あき みつけた



注**) 類似な現象として;
・近づけた2本のロウソクの瞬きの周期が揃う(協同する)という現象があります.以下に,協同現象のyoutube実験動画を引用します.
・蛍の明滅がそろってくる協同現象も知られています.
・私が昔係わったことのあるプラズマディスプレイ装置では,放電スポットが周期的に明滅する自励振動の現象がありました.

 

0

笑い話と計算

こんなクイズを何処かで聞いたことがありませんか?
1人10ドルのホテルに3人が止まり,30ドル支払いました.ホテルフロントが5ドル値引きしてくれ,女中を介して返金してきましたが,途中で女中が2ドル抜いたので,3人に渡ったのは1ドルづつです.結局,それぞれ9ドルづつ支払ことになり,全員でホテルに27ドル,女中が2ドル持っています.残りの1ドルはどこに消えたのでしょうか?
ややっこしくて変な気分ですが,お判りでしょう.27ドルと2ドルを足す意味は何でしょうか?

このような計算の笑い話は,落語のツボ算にも出てきます.買ったツボを返品するときに,支払った金額と返品するツボの値段を足してしまうのです.
数学の方程式を作るときに,左辺に足すか右辺に足すかよく意味を考えて式を作らないと,このようなとんでもないことになります.

落語の時そばでは,そば代金の16文を数える間に,8のときに時間(八つ)を混ぜ込むことで,1つスキップし金額を1文ごまかします.与太郎が真似をするときは,時間が(四つ)で,逆戻りし損をしてしまいます.これは,お金と時の呼び名という単位が異なり足すことのできないものを足すトリックです.我々ももう少し複雑な問題ではありますが.方程式を立てるときに単位の異なるものを足してしまうような式を立ててしまうことがよくあります.笑い話ではすみません.

話のついでにもう一つ,落語に出てくる不正な計算について述べましょう.落語花見酒では,酒だるを担いで売りに行く2人の間で,お金をやりとりしているうちに,お酒が全部なくなってしまう話です.これは売上金の公金横領に当たるわけですが,お金はお金でも,公金と自分の金というカテゴリーの違うものの区別ができなかったために起きた笑い話です.

最初の例に戻ると,ホテル取り分は25ドル,女中取り分は2ドル,客支払い分は3x9=27ドルで何の不思議もありません.

■以上をブログに掲載した時に,読者の方から「三方一両損」の話が出ました.
江戸っ子の職人が3両入りの財布を拾って,落とし主に届けると,落とし主はいらないと意地を張る.どちらも江戸っ子らしくていいですね.
大岡越前守が,1両出して4両にし,2両づつ分けさせる名裁きをします.
拾ったまま届けず手元に置けば3両ある.届けてもらって受け取っておけば3両ある.
奉行も関わらなければ1両出さずに済む.しかし,結局3人とも1両ずつ損をしたというのです.


■今回もう一つ,35頭のラクダと3人の兄弟(アラビア数学奇譚,3章より)を追加しましょう.

35頭のラクダを,父の遺言によれば,長男Aが1/2,次男Bが1/3,3男Cが1/9に分けろというものです.
かぞえびとペレズミがラクダをつれた友人と通りかかります.

ペレズミは言います「ここにある友人のラクダを上げますから36頭にしましょう」
36頭で計算すれば,すべて割り切れて,A,B,Cの3人のすべてが得をします.
なぜなら,
35/2<36/2=18
35/3<36/3=12
35/9<36/9=4

その結果,18+12+4=34頭ですみますから,1頭は友人に返却して,余った1頭は相続の問題を解決したペレズミがもらいます.

0

窓内の円

2019.02月号より,文 Юрий Белецкий +図 Алексей Вайнер

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


■オデッサ州立フィルハーモニー協会(建築家-A.I.ベルナルダーツィ)
の窓は,円と弧のパターンで装飾されています.
この窓は,すばらしい幾何学問題を提供しています.

白板に描いたように,小さな3つの円の中心$$O_{1},O_{2},O_{3}$$は1つの直線上にのります.証明してください.

 

 

 

 

 

 

 

 

■この問題をみて思い浮かべるのは,以前掲載した以下の2つの記事です.
アポロニウスの窓,アルべロス(靴屋のナイフ)という形のなかに面白い幾何学世界があります.
反転の利用ーパップスの定理
https://note.com/sgk2005/n/n56056054e23c

インドラの網と反転円
https://note.com/sgk2005/n/nec1396b13bd4


アルべロス(下図のオレンジ色の形)の中で,パップスの定理が成立しています.しかし,円$$ω_{2}$$と円$$ω_{1}$$の中心を結ぶ線は,水平ではありません.

 

 

 

 

 

 

いま問題になっているオデッサの窓内の円では,$$O_{1},O_{2}$$を結ぶ直線は水平になるのですが,その原因は,外側の大きな円(半径$$r$$)内で重なり合う2つの円(半径$$ar$$)に接するように,半径$$xr$$の円を決定することによります.しかる後に,この半径$$xr$$の円に接するように,半径$$yr$$の円を描くと,この円の中心は半径$$ar$$の中心線上に存在するようです.
問題のオデッサの建物図では,$$a=2/3$$(大きな円の直径を3等分する位置に柱がある)のようですが,実は,同じ半径の円が重なっていれば(任意の$$1/2<a<1$$)成り立つようです.

 

接する4つの円の半径の間にはデカルトの定理という式が成り立ちますが,それを計算するのは容易ではありません.幾何で解くことにしました.

 

 

 

 

 

 

 

 

 

 

 

 

円の接する条件を図示すると,辺の長さが,$$1-x,1-a,a+y,x+y$$の4角形になります.4角形の対角線は,$$a+x,1-y$$です.この条件は関係する円が接するための条件です.$$1-x$$の辺が垂直なのは対称性から明らか,半径$$yr$$の円の中心と,半径$$ar$$の円の中心を結ぶ$$a+y$$も垂直として,$$x$$と$$y$$を解くと,

 

この$$x,y$$を用いて,互いに対向する辺の長さを求めると,互いに等しいことが証明でき,矛盾は出ません.

 

従って,この4角形は長方形になり,辺$$x+y$$は水平であることがわかります.

0

桃子さんよりの解答の投稿

この式を証明していきたいと思います。n桁の数字を$$(x_n),(y_n),(z_n)$$とすると、

$$ (x_n)=(10^n-4)/6 $$

$$(y_n)=(10^n)/2$$

$$(z_n)=(10^n-1)/3$$

と表せる。元記事より

$$ x_{n}^{3}+y_{n}^{3}+z_{n}^{3}=10^{2n}x_{n}+10^{n}y_{n}+z_{n} $$


を証明すれば良いことがわかる。

$$x_{n}^{3}+y_{n}^{3}+z_{n}^{3}=((10^{n}-4)/6)^{3}+(10^{n}/2)^{3}+((10^{n}-1)/3)^{3}$$

$$ {10^{2n } }x_{n}+10^{n}y_{n}+z_{n}=10^{2n}(10^{n}-4)/6+10^{n}10^{n}/2+(10^{n}-1)/3 $$
$$=10^{3n}/6-10^{2n}/6+10^{n}/3-1/3$$

ゆえに

$$(x_n)^3+(y_n)^3+(z_n)^3={10^(2n)}(x_n)+(10^n)(y_n)+(z_n)$$


が成立する。

大まかなものだとこういう感じです。

0

菱形多面体

菱形30面体とサッカーボール(あるいはフラーレン)の関係の続編です.
菱形は正多角形ではありませんから,菱形多面体は正多面体ではありませんが,正多面体や準正多面体と密接な関係がありますので,菱形多面体に集中して見直しましょう.菱形12面体と菱形30面体があります.それぞれの菱形多面体は,準正多面体6・8面体と12・20面体の双対多面体として得られます.
(注)双対多面体というのは,面と頂点を入れ替えて対応させて作る多面体です.例えば,準正多面体の6・8面体は,正6面体の面と正8面体の面よりなり,正6面体の面を対応させた頂点と,正8面体の面を対応させた頂点とで,菱形12面体の頂点は構成されています.

 

(美しい幾何学p.21より)

 

 

 

 

 

 

 

 

 

 

 

 

 

■菱形12面体は,空間を隙間なく充填できる立体です.菱形12面体の面を合わせて空間を充填すると,立方面心格子の配列ができます.

 

 

(美しい幾何学p.61より)

 

 

 

 

■菱形12面体の見える万華鏡を作る

 

 

(美しい幾何学p.44,45より)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 さて,菱形12面体の菱形面の対角線比は,1:√2であることを確かめてください.
菱形30面体の菱形面の対角線比は,黄金比2:1+√5であるを確かめてください.


■IQライトと呼ばれるランプシェードの話が,kvantik(2019.07)に載っていました.重さはたったの100グラムで,30枚の薄いフレキシブルプレートを組み立てて作ります.各プレートは菱形の形状で,4つのフックがついていて組み立てます.このデザインは,デンマークのデザイナーHolger Strömによって1973年に作られたそうです.
名称のIQはInterlocking Quadrilateralsーー連動した四角形の略.
菱形面が5つ集まる場所と3つ集まる場所があることに注意して,組み立てましょう.

0

膜の振動モード,クラドニ図形

 
カバー写真は私のバイオリンですが,低音域に共鳴点があり振幅が大きくなり音が開くような気がするのです.バイオリンの音質が何とかならないかと思って,昔,高い本だと思いながら気まぐれで買った「楽器の音響学」安藤由典という本が手元にあります(残念ながら役には立ちませんでした).この本のp.132に,バイオリン胴板の振動モードの図(小橋,時田,日本音響学会誌,Vol.8,p.15,'52より引用したもの)があります.本自体古いし引用文献も大変古いので,もっと詳細な実験がその後どこかに発表されていると思います.特に調べていませんので,もしお気づきの方おられましたらお教えください.

 

バイオリンは駒から1cm付近の弦を弓で振動させ,駒から指板上の指で押さえた点までの長さの弦が振動し,その振動を胴で共鳴させます.共鳴箱の役割が重要です.定在波の振動の節となる場所は節点,2次元の面ですから,定在波の振動の節点は節線となって領域を取り囲んでいます.
振動モードの図で白い部分と斜線部分は振動方向が逆になっているので,斜線との境界線が節線です.周波数が上がるにつれて細かい領域に分かれて行くのは納得できるでしょう.楽器は特別な共振域ができないよう設計されあのような形になるのだ思いますが,ある音域が共振気味に耳元で鳴るのは良くありません.私はそれを見抜けずに迷った挙句良くない方を購入してしまいました.


■ここで,クラドニ図形の次の動画をご覧ください.


振動の腹では粉末は払いのけられ節線に集まります.この実験で見られる興味深い図形をクラドニ図形といいます.
振動から生じる節線についてのさまざまな疑問は,200年以上にわたって科学者を魅了してきました.1809年,クラドニがパリを訪問した後,フランス科学アカデミーはコンテストを発表しました.その目的は,「弾性表面の数学的理論を構築し,それが実験データとどの程度一致するかを示すこと」でした.この賞は1816年にソフィー・ジャーメインが受賞しました.その数学的モデルは,少し後のグスタフ・キルヒホフによって完成しました.

ここでこの話題を取り上げたのは,「トリニティオプション-サイエンス」第16号(310),2020年8月11日に,フョードル・ナザロフ,ミハイル・ソディン,アレクサンドル・ログノフによるこのテーマの紹介記事で,
アレクサンドル・ログノフが,2020年のヨーロッパ数学会のEME賞(数学への卓越した貢献が認められた35歳未満の10人の研究者に4年ごとに授与)を受賞したニュースを見たからです.

 

■周波数が上がると定在波の節線集合の形はだんだん細かくなりますが,どのように変わるのでしょうか.
バイオリンやギターなどの楽器は,圧縮に抵抗する弾性体の板を振動させますが,膜の振動であれば一定張力のみの弾性体ですみます.実際の楽器の振動計算をするのが目的ではなく,この節線集合サイズの振る舞いを知るのが目的ですので,アレクサンドル・ログノフは扱いが単純化できる膜モデルを用い,ラプラス微分方程式の各周波数に対する固有関数のゼロ節線集合のサイズに関するヤウ・シンツンとニコライ・ナディラシビリの予想を証明しました.

■この問題は,工学的には,2次元のFourier解析で膜の振動を正弦波の固有振動の重ね合わせに分解し,ラプラス方程式の固有関数を与えられた境界条件で解く有限要素法でコンピュータを用い数値解を得ることができます.
ラプラス演算子をΔ,振動数ωの固有関数 v_ω(x) は微分方程式
Δv_ω(x)+ 4(π^2)(ω^2)v_ω(x)= 0 の解です.節線集合は,条件 v_ω(x )= 0を満たすxの集合で,与えられた境界条件を満たすように解く問題です.


Fourierはナポレオン時代の数学者ですが,熱伝導の微分方程式の境界値問題を解くために開発したFourier解析を公開したのは1822年でした.従って,現代なら使う2次元のFourier変換もクラドニの時代にはありませんでした.

しかしながら,問題を精密に解くことと,現象の本質を理解することとは目的が違います.計算すればそうなるとか,一口ではいえないというのでは,本質が理解できたことになりません.

節線集合に関する有名な問題は,40年以上前に出された節線集合サイズに関するヤウ・シンツン予想です.節線の長さが,周波数ωの線形関数として増加する予想しました. それらは通常,膜を小さな正方形に分割し,それぞれのサイズを推定します.そのような推定のための便利なツールは,倍加指数(ハウスドルフ次元に似る)であり,立方体Qから倍の立方体2Qに変えたとき,固有関数の最大振幅の比の対数を倍加指数と定義しました.倍加指数が有界のままであれば,立方体Qに該当する節点集合のサイズも有界であるとの予想です.ニコライ・ナジラシビリは,ヤウ・シンツンによって提起された問は,調和関数の関連する質問に還元できることに気づきました.しかし,正方形が小さな断片に分割されたときに調和関数の倍加指数がどうなるかという問題は,2016年にアレクサンドル・ログノフとエフゲニア・マリンニコワの研究が発表されるまで進展していませんでした.

0

東京の感染収束と相互作用

実効再生産数が東京では,まだ1を少し超えているようですが,他の県では1未満になってきたようです.以下のサイトに,都道府県別の実効再生産数の時系列の変化のグラフがあります.

 

Rt Covid-19 Japan都道府県別コロナウイルスの感染拡大・収束状況(実効再生産数Rt)をグラフ化したWebサイトrt-live-japan.com
実効再生産数Rというのは,1人の感染者が新たな感染者を作る人数のことです.Rが1未満なら感染流行は減少収束し,1より大きければ感染は拡大します.しかしながら,各都道府県の実効再生産数がすべて1未満になっても,感染拡大の起こる可能性を警告している論文を前回紹介しました.その論文では,全体をコミュニティと病院という2つのグループに分割したモデルで,コミュニティ内の感染に関する実効再生産数と病院内の感染に関する実効再生産数がともに1未満であっても,全体の実効再生産数が1を超す(感染拡大が起こる)可能性が指摘されました.その原因は,コミュニティから病院に感染させる場合も,病院からコミュニティに感染させる場合もあるからです.

都道府県別の実効再生産数が,それぞれ1未満になっても,各県間の人の移動接触により各県間の感染が起こるので,全体の実効再生産数が1より大きくなることは十分あり得ます.油断は危険です.

■数学の形式としては,次の行列を作ります:
対角要素には,各都道府県の実効再生産数を並べ.行列のその他の要素には,異なる県間の感染率を対応させます.県間の感染率は,相当する県間の人の接触確率のようなものです.このような行列を作るにはいろいろなデータが必要ですが,この行列ができたとすると,この行列の固有値を求める数学の問題になります.最大の固有値が1を超していれば,全体の実効再生産数は1を超し伝染の拡大が起こります.

私たちの社会は,都道府県がそれぞれ孤立して独立でいるわけではなく,互いに相互作用(人の接触がある)しているので,独立な個別地区の予測と,全体の予測は大変異なり,このような計算をしてみないとわかりません.

(注)実効再生産数の計算方法は,Anne RがCoriらによるものが,山中伸弥のホームページに紹介されています.

0

フィボナッチ数列とルーカス数列

 

 

 

 

 

 

 

 

■直線上にn個の点が並んでいるとします.点が連続しないように選んで点の集合を作ります.そのような集合の選び方A_nは何通りありますか? ただし,点を1つも含まない集合は空集合Φと言いますが,集合の選び方の1つに空集合もあります.

・n=1のとき: Φ,{1}     → $$A_1=2$$
・n=2のとき: Φ,{1},{2}   → $$A_2=3$$ 
(注){1,2}の集合は点が連続するので条件を満たしません.

・n=3のとき: Φ,{1},{2},{3},{1,3} → $$A_3=5$$

・n=nのときは: n点目を選ばない $$A_{n-1}$$個の方法と,n点目は選ぶがn-1点目は選ばない $$A_{n-2}$$個の方法があります.
従って,$$A_n=A_{n-1}+A_{n-2}$$ ,これは,フィボナッチ数列$$F_n$$の定義ですが,初項が2なので,$$A_n=F_{n+2}$$になります.

■円周上にn個の点が並んでいる場合はどうでしょうか.今度はn番目の点と,1番目の点が連続してはダメです.この場合の集合の選び方をB_n個とします.

・n=1のとき: Φ,{1}     → $$B_1=2$$ 
・n=2のとき: Φ,{1},{2}   → $$B_2=3$$
・n=3のとき: Φ,{1},{2},{3}  → $$B_3=4$$ 
(注){1,3}は繋がるので条件にあいません.
・n=nのとき:
n点を除いた場合は$$ A_{n-1}$$通り,n点がある場合には,自分n点と両隣り(n-1と1)の計3点は除くので$$A_{n-3}$$通りがあります.

この両者の合計が一般式です:$$B_n=A_{n-1}+A_{n-3}=F_{n+1}+F_{n-1}=L_n$$

このような数列 $$B_n$$ はルーカス数列$$L_n$$と呼ばれます.

0

大丸百貨店(心斎橋)の幾何学模様★

今は閉鎖されてしまったyahooブログの仲間「さなのブログ」に大丸百貨店(心斎橋)の美しい幾何学模様の写真がありました.私は大阪にもずいぶん行ったのですが,心斎橋には縁がなく大丸百貨店もとうとう見ずじまいでした.さなさんから,ヴォーリズ設計の86年間皆に幸せを与え続けてきた美しい建物が取り壊されると教えられ惜しい限りです.そこで,私のyahooブログにこの記事を書きました(2015.12.31).その後,新しい建物が完成し2019.9.20に大丸百貨店は再開しました.ウイリアム・メリル・ヴォーリス(*)の懐かしいデザインが極力残されて,懐かしい雰囲気が感じ取れよかったと思っています.

(*注)壁紙模様で有名なイギリス人William Morrisではありません.アメリカ人のWilliam Merrell Voriesです.ヴォーリズはプロテスタントの伝道者としてひとり来日し,戦争中も日本に帰化し日本で骨を埋めた人です.近江兄弟社の前進を設立しヴォーリズ建築事務所も設立しました.明治学院チャペルをはじめ数多くの美しい建物を手掛けています.「屋根をかける人」門井 慶喜著, KADOKAWAは,ヴォーリスのすがすがしさが伝わる良い本です(学校出たてのヴォーリスが日本への船に乗っている場面から始まります)

■取り壊し前の建物の美しい幾何学模様を鑑賞しましょう.以下で取り上げる模様は建築物でよく使われ,イスラム起源の模様の雰囲気があります.


この写真(貴重な取り壊し前)は,さなさんのブログの写真に遠近法の補正をかけて,模様を正面から見たように修正したものです.ただし,写真に見られる8回対称の花模様は窪んだドームの奥にあるため,視差の効果で中心から寄ってしまいました.実際はそれぞれドームの中心(4回回転軸のある位置)にあります.この写真の繰り返し模様にはp4mmの対称性があります.

 

 

 

 

次の図も,さなさんのブログの写真に遠近法の補正をかけて,正面から見たようにし切り出したものです.建築には半円しか使われていませんが,全円を想像してみると頂点のなまった星形10角形のようです.この星形は五芒星を2つ重ねたらできるもので,黄金比がたくさん現れます.このような模様は東京ジャーミーの説教壇や門扉にも見られます.

 

 

 

 


 

この写真の下側に見られる繰り返し模様も取り上げましょう.


この模様には6回回転対称軸が配列しています(3回や2回回転対称軸も生じています).青い線は鏡映対称面です.繰り返し模様の対称性はp6mmです.

 

 


さなさんのブログのもう一つの写真から,切張りをして繰り返し模様を再現したものが以下の図です.ちょっとずれたところができましたが,パターン全体の様子は想像できるでしょう.


この模様も美しく大変複雑なものですが,4回対称性のある繰り返し模様であることがわかります.対称性はp4mmです.

 

 

 

 

 

 

 

 

 

 

 

 

■現在の大丸百貨店

これらの写真を見ると,建て替えられた建物にもヴォーリスのデザインが活かされているのがわかりますね.

 

 

 

 

 

 

 

 

0

四角い車輪,三角の車輪★

国立数学博物館MoMath(National Museum of Maths)は,米国唯一の数学博物館で,ニューヨークのマディソン・スクエアに,2012年12月15日オープンしました.
ここには30以上の対話型展示がありますが,ホールの展示で目立つのは,正方形の車輪の3輪車が滑らかに走る光景です.

たいへん興味深いので,床面の曲線がどのような形であるかを計算してみました.
ここに掲載する結果は,2013年7月22日の数学月間懇話会(第9回)で谷が発表したものです.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ついでに,応用問題として計算した3角形の車輪の結果を(Fig.2)に掲載します.

■Fig.2 三角の車輪

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

注)2013年10月2日に開設された東京理科大学「数学体験館」にも同じ企画が採用されている.

 

0

美しい幾何学ー美しいものには理由がある

昨年9月に表題の本(技術評論社)を出版しました.この本の構成は8つの章からなり,全章を通して万華鏡で繋がっています.1,2章は有限図形の対称性(点群).3,4章は周期的な空間の対称性(平面群).これらの映像は,万華鏡で作り出すことができます.5章は万華鏡.6章は円による反転という数学的な鏡を用いた万華鏡.7章はフラクタル操作という数学的な鏡を用いた万華鏡です.8章は東京ジャーミイで,イスラミック・デザインを鑑賞します.写真撮影にご協力いただいた東京ジャーミイの本屋さんにも本書を置いていただいています.


■この本に,第9章を続けて書くとすれば,イスラミック・デザインになります.イスラムデザインの特徴は,黄金比(すなわち5回対称や10回対称)がちりばめられていることです.しかし,5回対称性と2次元(あるいは3次元)世界の周期性とは両立できませんから,ちりばめられている5回(あるいは10回)対称性はロゼット内部だけに局所的に作用し,世界の全域を支配するものではありません.そのため,あたかも我々の住む3次元に高次元宇宙が投影しているようで不思議な魅力を感じます.イランのDarb-i Imam寺院(1453)の壁には,その500年後にヨーロッパで発見されるPenroseタイリング[自分の中に自分と同じパターンが繰り込まれる]と同様なパターンがすでに見られることをPeter LuとPaul Steinhardtが報告しています.イスラムの繰り返し模様は準結晶や基本領域が分割されて写像される万華鏡と似たところがあります.

0

格子が作る干渉模様(モワレ)★(164のリメイク版)

まず写真をご覧ください.

 

 

 

 

 

 

 

 

 

 

 

 

同じ正3角形(正6角形)格子[あるいは,正3角形2つよりなる平行4辺形格子とみてもよい]のパンチングメタルを2枚重ね合わせました.
この図の状態は,2枚の格子どうしのなす角度が2θ=30°になった場合です.初めの正3角形(正6角形)の格子より大きな新しい周期の格子が出現しているのがわかりますか.

 

 

 

 

■正方形格子(網目)を2枚重ねた場合を考察してみましょう.

 

 

 

 

 

 

 

 

 

 

 

両方の網目が重なった位置に,新しい網目の格子が見えて美しい.
2枚の正方形の格子(正方格子という)どうしの傾きを変えると,ときどきこのような新しい格子が現れます.
もとの格子の互いに直角な2つの並進ベクトルをa,bとすると(正方格子ならa=b),
もとの格子は,格子点 na+mb,(n,mは任意の整数)の集合です.
同じ正方格子を2枚傾けて重ねて,新しい周期の2つの並進ベクトル x, yが生じています.これらの図の状態は,

(左図)x=2a+b,y=a+2b .(右図)x=3a+b,y=a+3b (面心格子)

    $$ \left( \begin{array}{@{\,} cc @{\, } } 2 & 1 \\[0mm] 1 & 2 \end{array} \right) $$,     $$ \left( \begin{array}{@{\,} cc @{\, } } 3 & 1 \\[0mm] 1 & 3 \end{array} \right) $$

この基底変換を行列で書き,行列式を求めると3(左図),8(右図)ですので,
新しくできた格子はもとの格子と比べて面積で3倍(左図),8倍(右図)粗くなっていることがわかります.

格子というのは,並進ベクトルの作る群=並進群の”図的表現”です.
2枚の格子の干渉で生じた新しい格子の周期は,もとの格子の粗いサンプリングになっているわけで,
新しい格子は,もとの格子の部分群になります.

格子が重なって,拡大された(粗い)格子が見える現象は,干渉(ビート)と同じことです.
実際に,2つの原子網面が重なって,このようなビートが見えることは,
電子顕微鏡で格子像の観察をするときにもよく起こります.
結晶は周期的な構造をしているので,周期的な空間は「結晶空間」とも呼ばれます.
エッシャーの繰り返し模様や,壁紙模様などで,周期的空間の実例をたくさん目にしていると思います.

■2つの正方格子の平行なずれによる干渉(モワレ縞)

 

 

 

 

 

 

 

 

 

それぞれの正方格子の周期をλ,λとすると,新しい周期Lは

$$ \displaystyle \frac{1}{L}=\displaystyle \frac{1}{\lambda _{1 } }-\displaystyle \frac{1}{\lambda _{2 } } $$ の関係があります.

私は,子供のころ家にあった織物検査器というもので遊んだことがあります.これは,標準となる格子模様がガラスに刻んであり,織物にこのガラスを重ねると繊維の周期とのビートで縞模様が観察できます.1mmの中に何本繊維があるかとか,織り方が均一でなくどの程度乱れているかが,モアレ縞からわかります.

次の写真は,工事現場のネットが折り返されて2重になっているために観察されるモアレ縞です.

 

 

 

0

ベイズの定理と新型コロナウイルスPCR検査★

私は3月24,26日のまぐまぐメルマガ(311,312号)で以下の内容の発表をしました.-----
3月21日の厚労省の公表値を用いて,罹患率=発症患者/PCR検査数と定義すると,罹患率は,約5%になります.しかし,PCR検査の,感度と特異性(酒井健司,朝日デジタル)の情報を入れてベイズ推定した罹患率は5.9%になります.この推定値の増加は,主としてPCR検査感度に原因があり,実際の罹患者を取りこぼすためです.(注)この数値は,PCR検査を受けた限定されたグループをサンプルとしているために,一般の集団に対しては少し割り引いた数値になるでしょう.-----
今日PCR検査数も増加したので,4月24日時点の厚労省のデータを用いて,再計算をしてみました.ただし,PCR検査数が増加したといっても(検査を受ける条件はあまり緩和されていません).したがって,陽性確率が高いサンプル集団について検査が行われている状況は同じです.
カバーの図を見てください.ここで推定する数値はあくまでもサンプル集団に関するもので,全体集団に対してはいくらか割り引いた数字になるでしょう.

 

 

 

 

 

 

 


ーーーーー
■PCR検査状況(厚労省4/23データ)

 【PCR検査陽性者数】    【PCR検査陽性時の有症状・無症状の別】

 

 

 

 

 

 

 

 

 

新型コロナウイルスに対するPCR検査数は,4月23日の厚労省の発表で,135,983人になりました.1月前(3月21日)の数字の7.5倍です.PCR検査の陽性者数は11,919人,陽性者のうち発症患者(陽性者∩発症患者)は7,315人です.
発症患者/PCR検査数=罹患率 と仮の罹患率を定義すると,罹患率は約5.4%です.
陽性率=陽性者数/PCR検査数=0.088(前回0.056) ,陰性率=0.912(前回0.944)も定義します.

(要旨)================================================
4月23日の厚労省の公表値を用いて,罹患率=発症患者/PCR検査数と定義すると,罹患率は,約5.4%(前回5.0%)になります.しかし,PCR検査の,感度と特異性(酒井健司,朝日デジタル)の情報を入れてベイズ推定した罹患率は8.6%(前回5.9%)になります.この推定値の増加は,主としてPCR検査感度に原因があり,実際の罹患者を取りこぼすためです.
(注)この数値は,PCR検査を受けた限定されたグループをサンプル集合としているために,一般の集団に対しては少し割り引いた数値になるでしょう.
===================================================

■条件付き確率についての「ベイズの定理」とは次のように説明できます.
$$p(Y|X)p(X)=p(X \cap Y)=p(X|Y)p(Y)$$
記号の意味は例えば以下の様です.
$$p(X)$$  $$X$$が起こる確率
$$p(Y|X)$$ $$X$$が起こった後で$$Y$$が起こる確率
$$p(X \cap Y)$$ $$X$$かつ$$Y$$が起こる確率

ベイズの定理は,$$X$$(原因)が起きた後で$$Y$$(結果)が起きる確率$$p(Y|X)$$と,$$X$$と$$Y$$を入れ替えた確率$$p(X|Y)$$を結び付ける定理です.

■PCR検査の精度

新型コロナ検査、どれくらい正確? 感度と特異度の意味(酒井健司,朝日デジタル)により,次のように仮定します.
PCR検査の感度とは,罹患者がPCR検査で陽性(+)と正しく判定される確率のことで,あまり大きくなく0.7.
真の罹患者でもPCR検査が陰性(-)(偽陰性)となる確率が0.3程度だそうです.
検査の特異性とは,非罹患者が陽性(+)(疑陽性)と判定される確率で0.01程度だそうです.

$$\begin{array}{|c|c|c|}
\hline
& + & - \\[0mm]
\hline
罹患 & 0.7 & 0.3(偽陰性) \\[0mm]
\hline
非罹患 & 0.01(疑陽性) & 0.99 \\[0mm]
\hline
\end{array}$$

■これらの仮定の下で,以下の2つを推定しましょう.ただし,ベイズの定理を使います.
(1)PCR検査で陽性と判定されたとき,罹患者である確率を求めなさい.
$$p(罹患|+)=\displaystyle \frac{p(+|罹患)p(罹患)}{p(+)}=\displaystyle \frac{0.7 \times 0.054}{0.054 \times 0.7+0.946 \times 0.01}=0.80$$
+(陽性)でも,検査感度のせいで罹患者をとりこぼすことが多い.また,非罹患者の割合が多いので偽陽性の数も無視できず,全体として決定率を80%(前回79%)に下げている.

(2)罹患率を推定しなさい.
$$ p(罹患|-)=\displaystyle \frac{p(-|罹患)p(罹患)}{p(-)}=\displaystyle \frac{0.3 \times 0.054}{0.054 \times 0.3+0.946 \times 0.99}=0.017 $$
陰性と判定されたものの中に見逃された患者である可能性は1.7%(前回1.6%)ほどある.
従って,全人口のなかで推定される罹患率は$$0.088 \times 0.80+0.912 \times 0.017=0.086$$,すなわち,8.6%(前回5.9%)と推定できます.

 =====================================================text

■条件付き確率についての「ベイズの定理」とは次のように説明できます.
p(Y|X)p(X)=p(X∩Y)=p(X|Y)p(Y)
記号の意味は例えば以下の様です.
p(X)  Xが起こる確率
p(Y|X) Xが起こった後でYが起こる確率
p(X∩Y) XかつYが起こる確率
ベイズの定理は,X(原因)が起きた後でY(結果)が起きる確率p(Y|X)と,XとYを入れ替えた確率p(X|Y)を結び付ける定理です.
■PCR検査の精度

新型コロナ検査、どれくらい正確? 感度と特異度の意味(酒井健司,朝日デジタル)により,次のように仮定します.
PCR検査の感度とは,罹患者がPCR検査で陽性(+)と正しく判定される確率のことで,あまり大きくなく0.7.
真の罹患者でもPCR検査が陰性(-)(偽陰性)となる確率が0.3程度だそうです.
検査の特異性とは,非罹患者が陽性(+)(疑陽性)と判定される確率で0.01程度だそうです.

■これらの仮定の下で,以下の2つを推定しましょう.ただし,ベイズの定理を使います.
(1)PCR検査で陽性(+)と判定されたとき,真の罹患者である確率を求めなさい.
p(罹患|+)=p(+|罹患)p(罹患)/p(+)=0.7×0.054/(0.054×0.7+0.946×0.01)=0.80
+(陽性)でも検査感度のせいで罹患者をとりこぼすことが多い,また,非罹患者の割合が大きいので偽陽性も無視できず,この2つの原因が,+判定でも罹患者である確率80%(前回79%)を下げている.
(2)罹患率を推定しなさい.
p(罹患|−)=p(−|罹患)p(罹患)/p(−)=0.3×0.054/(0.054×0.3+0.946×0.99)=0.017
-(陰性)と判定されたものの中に見逃された患者である可能性は1.7%ほどある.

従って,サンプル集合全体で推定される罹患率は0.088×0.80+0.912×0.017=0.086
すなわち,8.6%(前回5.9%)と推定できます.

0

ブルセラ症(病)★(リメイク版)

ナイチンゲールが50年間ベッドでの仕事を余儀なくされ,死因ともなったのは,クリミア戦争時に流行したマルタ熱(ブルセラ症)であることが明らかになった.D A B Young,Florence Nightingale's fever,(BMJ VOLUME 311 23-30 DECEMBER 1995)
ーーーーーーー
■ブルセラ症(brucellosis)
NIID国立感染症研究所https://www.niid.go.jp/niid/ja/kansennohanashi/513-brucella.html,および,wikiを参照した.----
ブルセラ症はマルタ熱とも呼ばれる細菌に感染して起こる人獣共通感染症.クリミア戦争でマルタ熱が流行したことで世界的に注目されたが,紀元前400年頃のヒポクラテス著書にブルセラ症と思われる疾患がすでに記載されている.現在でも,世界中で毎年50万人を越える家畜ブルセラ菌感染患者が新規に発生(食料や社会・経済が家畜へ依存し,家畜ブルセラ病が発生している国や地域)発生している.マルタ熱の原因菌として,イギリス軍の軍医Sir David BruceによりB. melitensis が分離(1887)されて以降,種々のブルセラ属菌が発見されている.ヒトへの感染が報告されている主なものは,B. melitensis (自然宿主:ヤギ,ヒツジ),B. suis (ブタ),B. abortus (ウシ,水牛),B. canis (イヌ)の4菌種である.日本では,過去に牛のB. abortus感染が流行し問題になったが,家畜衛生対策の徹底により,1970年を最後に国内家畜から菌が分離された例はない.感染動物の加熱殺菌が不十分な乳・乳製品や肉の喫食による経口感染が最も一般的である.ヒト-ヒト感染は極めてまれである.
ブルセラ属菌は敵国の兵士や住民に罹患させて能力を低下させる生物兵器としても研究・培養された.アメリカは1942年、ソ連は1978年に兵器化を実現した.

■サビノワとリユドミラ物語.Екатерина Савинова и Людмила Сенчина
Приходите завтра「明日来なさい」(1963年,ソビエト映画)は,1540万観客の大ヒット映画(ロシア語)です.シベリアの寒村からИнститут имени Гнесиных モスクワの音楽学校に入ろうと出てきた才能ある少女の物語です.重い荷物を背負って一人で都会に出てきた元気で愉快な純粋な少女です.しかし,モスクワに来たときは既に遅く入学試験は終わっていました. 少女の役名はФросяフローシャ.これは実在のЕкатерина Савиноваサビノワの伝記映画で,サビノワ自身が主演し歌います.あの声はサビノワしか出せません.私がこの映画を知ったのも彼女の3.5オクターブ出るという魅力的な声の歌を耳にしたからです.音楽学校の玄関で有名なソコロフ教授に何度か訴えます.ついに引き出した教授の返事が Приходите завтра!「明日来なさい」でした.教授に学校のオーデトリウムで聞いてもらえた彼女の歌声がすばらしい.教授もフローシャの純粋さと素晴らしい声を見抜き,何とか入学させようと動きます.この映画はサビノワが自分で主演した愉快で楽しい映画で,私はとても好きです.しかし,残念ながら,その後のサビノワは,ブルセラ病(生牛乳を飲むと牛から感染する)が重くなり鉄道自殺(1970年,43歳)してしまいます.

興味深いのは,1963年にウクライナで高校生時代に,Людмила Сенчинаリュドミラ・センチナはきっとこの映画を見たのではないかと私は想像します.リュドミラは成功して,ロシア人民芸術家歌手になります.彼女は今年の1月25日に,ペテルブルクの病院で死去(67歳)しました.
リュドミラは,高校を卒業して,歌手になるために,ウクライナからレニングラード(現ペテルブルグ)に出てきました.でも,そのとき音楽学校の試験は終わっていたのです.よく似た話があるものですね.サビノワと違うのはペテルブルグに親戚がいたことです.
リュドミラの代表曲は,Песня Золушкиシンデレラの歌
-------

0

Covid-19とナイチンゲール病院★

NHS Nightingale Hospital
NHS=国民保険サービス,Nightingale Hospital=臨時救急病院≒野戦病院
イギリスのNHSは4つの地域区分(イングランド,スコットランド,ウエールズ,北アイルランド)があります.イングランドのナイチンゲール病院は,London(4,000床)に4月3日オープンを皮切りに,7つ目のSunderland(460床)は日産自動車工場近くに準備が整いました.Covid-19患者の数に北東部の病院が対処できない場合に限り使われます.「人々が社会的距離を保ち,あるいはワクチンができ,この病院を使わないですむことを願っている」とNewcastle病院のNHS局長は語りました(Sunderland Echo紙).
Stay at home, protect the NHS, and save lives
イギリスは,3月23日に3週間の全土封鎖に踏み切ったが,まだピークが去らないとしてさらに3週間の延長に入っています.4月19日現在.累積確認患者数は90,629,累積死者数は14,399に上りますが,一日の感染者の広がりは減少してきました.封鎖と並行して,PCR検査から抗体検査に転換し,抗体検査の大規模実施(現時点で1万3729人1日3万5000件の能力がある)と「NHSナイチンゲール病院」の設立を進めています.「ナイチンゲール病院」といはどのような病院でしょうか?

クリミア戦争(1853-1856)で野戦病院の衛生状態の改革を行ったナイチンゲールは,『看護覚え書』,『病院覚え書』など多くの著作を残し,そこにはワンルームの病院設計図も載っています.高い天井まで延びた3層の窓,3層目の窓を開放し換気,ベッドの間隔,等々,ナイチンゲールの病院概念が活かされた臨時救急病院≒野戦病院だからこう呼ぶのでしょう.
ーーーー

 

 

 

 Sunderland Echo↑

Getty Images↓

 

(注)以下のナイチンゲールの伝記的記事は,
草の実堂;https://kusanomido.com/study/history/western/21987/ を参考にした.
ナイチンゲールはクリミア戦争(1853-1856)で野戦病院の衛生状態を実践改革し死亡率を低下させました.帰国後のナイチンゲール・チームはバーリントンホテルに集結し,戦時の報告書をもとに病院の状況分析をして,数々の統計資料を作成,改革のためにつくられた各種委員会に提出しました.特に,死亡原因ごとに死者の数をひと目で分かるようにレーダーチャートの発明があります.
1860年にナイチンゲールが看護専門学校(ナイチンゲールスクール)を設立したのは広く知られていますが,ナイチンゲールが統計学者であることはあまり知られていません.疫学研究の元祖です.1859年にイギリス王立統計学会の初の女性メンバーに選ばれ,アメリカ統計学会の名誉メンバーにも選ばれました.ナイチンゲールは90歳で亡くなりますが,晩年50年間はほとんどベッドの上で,本の原稿や手紙を書く活動でした.その病因はブルセラ病に感染したこと(by D A B Young,Florence Nightingale's fever,1995)でした.ブルセラ病については,以前に述べたことがあるのでそちらを参照ください.

0

COVID-19感染拡大シュミレーションの数理モデル★

新型コロナウイルスの感染拡大が続いています.皆様お元気でしょうか.注意してお過ごしください.
緊急事態宣言下で,人と人の接触機会を最低7割,極力8割の削減を,政府は目標に掲げています(朝日新聞デジタル).
接触機会をある閾値下に削減すると感染が減衰し収まるわけです.数学月間の会の石黒真木夫氏が,マクロの数理モデルでシミュレーションを行いました.その結果は,youtubeチャンネル「NPO数学月間の会」にアップロードし公開しました.そのリンクを探すには,数学月間のホーム・ページhttp://sgk2005.saloon.jpにアクセスします.現在そのトップ頁に掲載しています.そこで用いたシミュレーションのエクセルファイルは,同ホームページの記事中にリンクを張りましたので,各自がダウンロードしてシミュレーションを体験することができます.参考論文(西浦博・稲葉寿)へのリンクも,同ホームページの記事中に置きました.
*youtubeチャンネル「NPO数学月間の会」の動画へのリンクは,数学月間の会のホーム・ページにアクセスし,youtubeチャンネルのタブを開くとそこに置かれています.

(1)石黒のシミュレーションの概要
ある人口集団を,未感染者,ウィルス感染源,免疫獲得者,死亡者に分類し,未感染者がウィルス感染源の一員と接触すると,ある感染確率で未感染者が感染してウィルス感染源となる.ウィルス感染源のウィルス拡散は14日間つづき,14日目に「死亡率」に従って死亡者と免疫獲得者に分かれ,免疫獲得者はもはやウィルスを拡散することも再感染することもなくなる.このようなルール(数理モデル)でシミュレーションを行った.このモデルに基づくと,時間の経過とともに未感染者は単調減少し,免疫獲得者は単調増加するので,感染の流行はかならず止まる.しかしそれは集団全員が感染した後である.

感染確率と死亡確率を適当に与えれば,シミュレーションは簡単である.いまの計算機をもってすれば人口集団の各個人の命運をたどるミクロシミュレーションもさして難しくない.ここで紹介するのは未感染者やウィルス感染源集団の大きさの変化を追跡するマクロシミュレーションである.確率的な現象の「期待値の動き」を追いかける決定論的なダイナミクスを採用する.もし,ミクロシミュレーションをして,算術平均の変化を見るとマクロシミュレーションの結果に「誤差」が乘ったような動きになるだろう.
石黒シミュレーションによる発見は,減少の後に揺り戻しが付随していることである.そのような波動を繰り返しながら徐々に減少し収束していきます.ワクチン等の発見がなくこの状態が続けば,ときおり感染者が増加する波動を繰り返しながら,生存者全員が免疫を獲得するまで続き.その間多数の死者がでるでしょう.

(2)ミクロシミュレーションについて
講演会「数学と生命科学--数理モデルを中心として」
主催:上智大学理工学部数学科/情報理工科(「数学月間」参加プログラム)
があったのは2008年8月4日(月)のことです.この中の講演に,「感染症対策における数理モデルの役割」(大日康史,国立感染症研究所)というのがありました.今回のCOVID-19の感染拡大にあたり,この国立感染症研究所の感染症対策のシミュレーションが,タイムリーに政策に活かされているとは思えません.原発事故の当時SPEEDIの結果が活用されなかったのに似ていると私は思います.

■感染症対策における数理モデルの役割,大日康史(国立感染症研究所)の概要
数理モデルによる感染拡大のシミュレーションは,新型インフルエンザやバイオテロなどの対策の有効性評価に必要である.
数理モデルには,SIRモデル,ibm(IndividualBasedモデル),Ribm(Realibm)などがある.
本研究で用いたRibmとは,実際に調査した個人の移動,所在の記録データ(首都圏では88万人)にもとづき,
6分ごとに人々の接触状態(感染の機会)が定義されるものである.新型インフルエンザには,種々のタイプがあり鳥類間の感染は起こるが,鳥から人への感染は血液の濃厚接触などの場合に限られる(豚と人の感染するインフルエンザのタイプは似る).人に感染した場合に,人から人への感染が始まり拡大していく.シミュレーションには,例えば以下のシナリオを用いる:(第1日)初発例が外国で感染.(第3日)帰国.帰宅後(八王子)感染性を持つ.(第4日)出社(丸の内).発症.(第5日)国際医療センターに受診.東京都健康安全研究センターで検査診断.(第6日)対策へ:シミュレーションの結果である首都圏への感染拡大の様子や全国への拡大の様子が示された.どのような対策(外出自粛,地域閉鎖,休校,住民全員が予防服用,....)をとると効果があるかが予測できるシミュレーションが示された.

0

ストークスの法則

■堆積岩は,岩石の砕屑物が水中で堆積して生まれたものです.この堆積物には,火山灰など火山由来のものも,石灰岩のような生物由来のものもありますが,岩石の風化などで生じた砕屑物は,その粒径により,礫(2mmより大きい),2mm以下の細かい粒径のものは,砂($$2>・・・>1/2^4$$),シルト($$1/2^4>・・・>1/2^8$$),粘土($$1/2^8>・・・$$)に分類されます.
静かな水中で,様々な粒径の砕屑土砂が沈降していくときの終端速度(一定になった速度)は,ストークスの法則で見積もることができ,大きい粒子の終端速度は大きく,小さい粒子の終端速度は小さいことがわかります.洪水で河口に運ばれてきた大小混合の砕屑物は,河口近くに大きい粒子を堆積させ,離れた海へ運ばれて堆積するのは小さい粒子ということになります.

■粘性液体中を静かに沈降していく粒子の速度が一定(終端速度)$$v$$のとき,次のように記述できます.
粒子は小さな球形で直径$$ d $$,密度を$$\rho _{s}$$とし,粘性液体の粘度$$\eta$$ ,密度を$$\rho_{f}$$ とします.
微粒子に働く力が釣り合うと(加速度0になり),粒子は一定速度(終端速度)で沈降します.つまり, 
重力$$=$$浮力$$+$$抵抗力,あるいは,重力$$-$$浮力$$=$$抵抗力  
従って,$$\displaystyle \frac{\pi ^{2}d^{3 } }{6}\left( \rho _{s}-\rho_{f} \right) g=3\pi \eta dv$$,ただし,$$g$$は重力加速度.
これを解いて,
$$v=\displaystyle \frac{\left( \rho _{s}-\rho_{f} \right) g}{18\eta }d^{2}$$
これがストークスの式です.

■ストークスの式を使って,水中の球形石英粒子の沈降速度を求めると,粒子径1 µm(粘土)の沈降速度は0.0001cm/s(およそ30m/年),粒子径10 µm(シルト)の沈降速度は0.01cm/s(およそ3000 m/年),少し大きな粒子径1 mm(砂)の粒子は1 m/sの沈降速度です.実験との比較では,100μm以下ではストークスの式はほぼ成り立ちますが,1mmになるとストークスの式から外れ沈降速度が大きくなります.これは,粒子径が大きくなると,沈降粒子の背後に渦流が発生しストークスの式が適用できないからです.

もし,水よりも粘性の大きい,あるいは密度も大きい分散媒を用いれば,もっと大きな粒子までストークスの式が適用できます.
私は,万華鏡の設計で,分散媒の中を沈降するガラスくずの速度を考察するのにストークスの式を用いました.

 

0

youtubeチャンネル開設

皆さまお元気でおお過ごしでしょうか.メルマガ311,312号で取り上げましたが罹患率5~6%でした.ただし,これはPCR検査を受けた人数に対してで,一般人に対しては少し割り引いた罹患率になるでしょう.3月30日現在の東京都の延べ患者数は443人とのことです.実際は都市封鎖をしてもおかしくない事態です.
この状況はしばらく続くので,数学月間の会の活動としてのイベントがいつ実施できるか見通せません(今年も7月22日に数学月間懇話会をやる予定です),
この対策として常時情報発信ができるyoutubeチャンネル(NPO数学月間の会)を立ち上げました.
このメルマガが皆様に届く朝には,このyutubeチャンネルも(3月31日0:00)公開されていると思います.ぜひお確かめの上,問題があるかどうかご報告くださいますようお願いいたします.
私個人のインターネット環境はwifiですので通信速度が遅く,
大きな動画のuploadに時間がかかり現在まだ5つくらいです.
今後,会員皆様の関連動画も載せられるように考えますので,ご協力のほどお願いいたします.

0

ベイズの定理と新型コロナウイルス

(要旨)ーーー
3月21日の厚労省の公表値を用いて,罹患率=発症患者/PCR検査数と定義すると,罹患率は,約5%になります.
しかし,PCR検査の,感度と特異性(酒井健司,朝日デジタル)の情報を入れてベイズ推定した罹患率は5.9%になります.
この推定値の増加は,主としてPCR検査感度に原因があり,実際の罹患者を取りこぼしていたためです.
(注)この数値は,PCR検査を受けた限定されたグループをサンプルとしているために,一般の集団に対しては少し割り引いた数値になるでしょう.
======================================

■条件付き確率についての「ベイズの定理」とは次のように説明できます.
$$p(Y|X)p(X)=p(X \cap Y)=p(X|Y)p(Y)$$
記号の意味は例えば以下の様です.
$$p(X)$$  $$X$$が起こる確率
$$p(Y|X)$$ $$X$$が起こった後で$$Y$$が起こる確率
$$p(X \cap Y)$$ $$X$$かつ$$Y$$が起こる確率

ベイズの定理は,$$X$$(原因)が起きた後で$$Y$$(結果)が起きる確率$$p(Y|X)$$と,$$X$$と$$Y$$を入れ替えた確率$$p(X|Y)$$を結び付ける定理です.

■新型コロナウイルスに対するPCR検査数は,厚生労働省の発表で,日本でも3月21日現在,18,134人になりました.
PCR検査による感染者数は1,007人,発症患者(=罹患者と定義)はそのうちの884人です.

 

 

 

 

 

 

 

発症患者/PCR検査数=罹患率 と仮の罹患率を定義すると,罹患率は約5%です.
陽性率=感染者数/PCR検査数=0.056 ,陰性率=0.944 も仮に定義します.

新型コロナ検査、どれくらい正確? 感度と特異度の意味査(酒井健司,朝日デジタル)をもとにして,次のように仮定します.PCR検査の感度というのは,罹患者がPCR検査で+になる確率のことで,あまり大きくなく0.7, 罹患者でもPCR検査が-となる場合(偽陰性)の確率は0.3程度だそうです.
検査の特異性により,非罹患者が+(疑陽性)と判定される確率は0.01だそうです.
*注)3月24日のメルマガに使った仮定の数値は,実際とだいぶ違いましたので,修正した以下の表に差し替えました.
$$\begin{array}{|c|c|c|}
\hline
& + & - \\[0mm]
\hline
罹患 & 0.7 & 0.3(偽陰性) \\[0mm]
\hline
非罹患 & 0.01(疑陽性) & 0.99 \\[0mm]
\hline
\end{array}$$
これらの仮定の下で,以下の2つを推定しましょう.ただし,ベイズの定理を使います.
(1)PCR検査で陽性と判定されたとき,罹患者である確率を求めなさい.
$$p(罹患|+)=\displaystyle \frac{p(+|罹患)p(罹患)}{p(+)}=\displaystyle \frac{0.7 \times 0.05}{0.05 \times 0.7+0.95 \times 0.01}=0.79$$
+(陽性)でも,検査感度のせいで罹患者をとりこぼすことが多い,非罹患者の割合が多いので偽陽性も無視できず,全体として決定率を下げている(79%).

(2)罹患率を推定しなさい.
$$ p(罹患|-)=\displaystyle \frac{p(-|罹患)p(罹患)}{p(-)}=\displaystyle \frac{0.3 \times 0.05}{0.05 \times 0.3+0.95 \times 0.99}=0.016 $$
陰性と判定されたものの中に見逃された患者である可能性は1.6%ほどある.
従って,全人口のなかで推定される罹患率は$$0.056 \times 0.79+0.944 \times 0.016=0.059$$,すなわち,5.9%と推定できる.

*注)ただし,PCR検査は限定されたグループに対してなされており,偏った集団をサンプルとしているので,全人口に対してなら少し割り引いた値が推定される.

 

0

Tex練習:w振り子

一般の振幅

$$\left\{ \begin{array}{@{\,} c @{\, } }\displaystyle \frac{d}{dt}\displaystyle \frac{ \partial L}{ \partial \dot{\phi } }-\displaystyle \frac{ \partial L}{ \partial \phi }=0 \\[0mm]\displaystyle \frac{d}{dt}\displaystyle \frac{ \partial L}{ \partial \dot{\psi } }-\displaystyle \frac{ \partial L}{ \partial \psi }=0\end{array} \right. $$

ラグランジュ関数$$L$$は,

$$L=T-U$$

$$ T=\displaystyle \frac{m+m_{1 } }{2}l^{2}\dot{\phi }^{2}+\displaystyle \frac{m_{1 } }{2}l^{2}_{1}\dot{\psi }^{2}+m_{1}ll_{1}cos\left( \phi -\psi \right) \dot{\phi }\dot{\psi } $$

$$U=-\left( m+m_{1} \right) glcos\phi -m_{1}gl_{1}cos\psi $$

--------------------

$$\displaystyle \frac{ \partial L}{ \partial \dot{\phi } }=\left( m+m_{1} \right) l^{2}\dot{\phi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \dot{\psi }$$

$$\displaystyle \frac{ \partial L}{ \partial \dot{\psi } }=m_{1}l_{1}^{2}\dot{\psi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \dot{\phi }$$

$$\displaystyle \frac{ \partial L}{ \partial \phi }=-m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi $$

$$\displaystyle \frac{ \partial L}{ \partial \psi }=m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi $$

--------------------

$$\left\{ \begin{array}{@{\,} c @{\, } }\left( m+m_{1} \right) l^{2}\ddot{\phi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\psi }-m_{1}ll_{1}\dot{\psi }sin\left( \phi -\psi \right) \left[ \dot{\phi }-\dot{\psi } \right] =-m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}l_{1}^{2}\ddot{\psi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\phi }-m_{1}ll_{1}\dot{\phi }sin\left( \phi -\psi \right) \left[ \dot{\phi }-\dot{\psi } \right] =m_{1}ll_{1}\dot{\phi \psi }sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi\end{array} \right. $$

 

$$ \left\{ \begin{array}{@{\,} c @{\, } }\left( m+m_{1} \right) l^{2}\ddot{\phi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\psi }+m_{1}ll_{1}\dot{\psi }^{2}sin\left( \phi -\psi \right) =-\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}l_{1}^{2}\ddot{\psi }+m_{1}ll_{1}cos\left( \phi -\psi \right) \ddot{\phi }-m_{1}ll_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) =-m_{1}gl_{1}sin\psi \end{array} \right. $$

$$ \left[ \begin{array}{@{\,} cc @{\, } }\left( m+m_{1} \right) l^{2} & m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm] m_{1}ll_{1}cos\left( \phi -\psi \right) & m_{1}l_{1}^{2}\end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } \ddot{\phi } \\[0mm]\ddot{\psi }\end{array} \right] =\left[ \begin{array}{@{\,} c @{\, } }-m_{1}ll_{1}\dot{\psi }^{2}sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}ll_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi\end{array} \right] $$

$$\left[ \begin{array}{@{\,} cc @{\, } }\left( m+m_{1} \right) l^{2} & m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm]m_{1}ll_{1}cos\left( \phi -\psi \right) & m_{1}l_{1}^{2}\end{array} \right] ^{-1}=\displaystyle \frac{1}{m_{1}\left( m+m_{1} \right) l^{2}l_{1}^{2}-m_{1}^{2}l^{2}l_{1}^{2}cos^{2}\left( \phi -\psi \right) }\left[ \begin{array}{@{\,} cc @{\, } }m_{1}l_{1}^{2} & -m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm]-m_{1}ll_{1}cos\left( \phi -\psi \right) & \left( m+m_{1} \right) l^{2}\end{array} \right] $$

 $$ \left[ \begin{array}{@{\,} c @{\, } }\ddot{\phi } \\[0mm]\ddot{\psi }\end{array} \right] =\displaystyle \frac{1}{m_{1}\left( m+m_{1} \right) l^{2}l_{1}^{2}-m_{1}^{2}l^{2}l_{1}^{2}cos^{2}\left( \phi -\psi \right) }\left[ \begin{array}{@{\,} cc @{\, } } m_{1}l_{1}^{2} & -m_{1}ll_{1}cos\left( \phi -\psi \right) \\[0mm]-m_{1}ll_{1}cos\left( \phi -\psi \right) & \left( m+m_{1} \right) l^{2} \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } }-m_{1}ll_{1}\dot{\psi }^{2}sin\left( \phi -\psi \right) -\left( m+m_{1} \right) glsin\phi \\[0mm]m_{1}ll_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) -m_{1}gl_{1}sin\psi\end{array} \right] $$

 

$$=\displaystyle \frac{1}{m_{1}\left( m+m_{1} \right) l^{2}l_{1}^{2}-m_{1}^{2}l^{2}l_{1}^{2}cos^{2}\left( \phi -\psi \right) }\left[ \begin{array}{@{\,} c @{\, } }-m_{1}^{2}ll_{1}^{3}\dot{\psi }^{2}sin\left( \phi -\psi \right) -m_{1}\left( m+m_{1} \right) gll_{1}^{2}sin\phi -m_{1}^{2}l^{2}l_{1}^{2}\dot{\phi }^{2}cos\left( \phi -\psi \right) sin\left( \phi -\psi \right) +m_{1}^{2}gll_{1}^{2}cos\left( \phi -\psi \right) sin\psi \\[0mm]m_{1}^{2}l^{2}l_{1}^{2}\dot{\psi }^{2}cos\left( \phi -\psi \right) sin\left( \phi -\psi \right) +m_{1}\left( m+m_{1} \right) gl^{2}l_{1}cos\left( \phi -\psi \right) sin\phi + \sqcap - m_{1}\left( m+m_{1} \right) l^{3}l_{1}\dot{\phi }^{2}sin\left( \phi -\psi \right) -m_{1}\left( m+m_{1} \right) gl^{2}l_{1}sin\psi\end{array} \right] $$

 

$$\left[ \begin{array}{@{\,} c @{\, } }\dot{\phi }(n+1) \\[0mm]\dot{\psi }(n+1)\end{array} \right] =\left[ \begin{array}{@{\,} c @{\, } }\dot{\phi }(n) \\[0mm]\dot{\psi }(n)\end{array} \right] +\left[ \begin{array}{@{\,} c @{\, } }\ddot{\phi }(n) \\[0mm]\ddot{\psi}(n)\end{array} \right] \mit\Delta t$$

 $$ \left[ \begin{array}{@{\,} c @{\, } } \phi (n+1) \\[0mm] \psi (n+1) \end{array} \right] =\left[ \begin{array}{@{\,} c @{\, } } \phi (n) \\[0mm] \psi (n) \end{array} \right] +\left[ \begin{array}{@{\,} c @{\, } } \dot{\phi }(n) \\[0mm] \dot{\psi }(n) \end{array} \right] \mit\Delta t $$

0

Tex練習:compton電子

$$\displaystyle \frac{E'}{E}=\displaystyle \frac{1}{1+\alpha (1-cos\theta )}$$
$$\alpha =\displaystyle \frac{E}{m_{0}c^{2 } }$$
クラインー仁科
$$\displaystyle \frac{d\sigma }{d\mit\Omega }=\displaystyle \frac{r_{0 } }{2}\left( \displaystyle \frac{E'}{E} \right) ^{2}\left( \displaystyle \frac{E'}{E}+\displaystyle \frac{E}{E'}-sin^{2}\theta \right) $$
$$E_{e}=E-E'=E\displaystyle \frac{\alpha (1-cos\theta )}{1+\alpha (1-cos\theta )}$$
$$\displaystyle \frac{d\sigma }{dE_{e } }=\displaystyle \frac{d\sigma }{d\mit\Omega }\displaystyle \frac{d\mit\Omega }{d\theta }\displaystyle \frac{d\theta }{dE_{e } }$$
$$ d\mit\Omega =2\pi sin\theta d\theta ,     \displaystyle \frac{d\mit\Omega }{d\theta }=2\pi sin\theta $$\

$$\displaystyle \frac{dE_{e } }{d\theta }=E\displaystyle \frac{\alpha sin\theta }{\left[ 1+\alpha \left( 1-cos\theta \right) \right] ^{2 } }$$

$$\displaystyle \frac{d\sigma }{dE_{e } }=\displaystyle \frac{d\sigma }{d\mit\Omega }2\pi sin\theta \displaystyle \frac{\left[ 1+\alpha \left( 1-cos\theta \right) \right] ^{2 } }{E\alpha sin\theta }=\displaystyle \frac{\pi r_{0 } }{E\alpha }\left( 1+cos^{2}\theta \right) \left\{ 1+\displaystyle \frac{\alpha ^{2}\left( 1-cos\theta \right) ^{2 } }{\left( 1+cos^{2}\theta \right) \left[ 1+\alpha \left( 1-cos\theta \right) \right] } \right\} $$

0

49平面タイリングの鑑賞

1種類の形(2等辺3角形)の赤色と黄色のタイル(赤タイルと黄タイルは互いに鏡像)で作ったタイル張り模様を鑑賞しましょう.1種類の形のタイルで,平面をタイル張りすると,必ず周期的なタイル張りになってしまうと思い込むのは間違っています.確かにFig.4,やFig.5のような周期的なタイリングはすぐ思いつきます.

 

 

 

 

 

 


しかし,Fig.2やFig.3のように非周期なもので,平面をタイル張りするものがあります.Fig.2は中心に回転対称があるタイリング模様で,点群5mの対称性です.Fig.3は,2つの目がある螺旋パターンのタイリングで,水平線は映進面だと思うかもしれませんが,このパターンには周期がありませんから映進操作はできません.
螺旋の目の中間に対称心があります.

 

 

 

 

 

 

 

 

 

さて,ここで万華鏡で作られるタイリング模様Fig.1の登場です.
この万華鏡を生む3枚の鏡は1つの頂点では点群を生成しますが,他の2つの頂点では点群を生成しません.従って平面を赤と黄色の市松模様で埋めることはありません.全体の代数系は,群より緩いもの(特殊な亜群)になってしまいますから非常に複雑です.
対称操作は局所的で,独自の作用域と値域があり興味深いものです.
作用域,値域の制限のために,一つのタイル全体が無傷で写像されるパターン内の位置と,部分が写像される位置があり,このような複雑なタイリング模様ができます.

0

シュロ縄の結び方

シュロ縄で柵の竹竿を結びました.庭師は男結びと言う方法で結ぶそうですが,私は簡単にランニング・ノットという方法で結びました.実は,シュロ縄の扱いが大変だったので,一番作業の楽な結び方をして,後でこの結び方の名前を調べたら,ランニング・ノットという方法であることがわかりました.
ランニング・ノット(あるいは,スリップ・ノット)と言われる所以は,竹竿を通してから紐を引っ張って締めると結節ノットが移動して,自然に竹竿の周りの輪が締まるからです.結節になる輪から紐の両端が同じ方向に出ていますから,竹竿を通してから紐の一端を引っ張ると,輪が締り結節になると同時に,他端も同方向に引かれるので,両側から輪を締め,自分自身を締め緩みを防止しする一番シンプルな結び方になります.
ランニング・ノットの結び方で紐の両側を引っ張ると,輪の中に竹竿がなければ手品のように紐は結び目が出来ずに解けてしまいます.比較のために,もやい結びを見てみると,結びの両側を引っ張ると結節ノットは移動せず輪が出来てしまい,竹竿の周りを締める結び方にはなりませんし,竹竿がない状態で,もやい結びの紐の両側を引っ張ると解けずに固定した輪を残して結び目が出来てしまいます.

 

 

 

 

 

 

 

 

 

 

 

 

紐の始まりを竹竿の周りのランニング・ノットから始めて,柵を組んだ竹竿に巻きつけ固定し,紐の最後もランニング・ノットで収めようとするとなかなか難しい.巻いてきたひもが緩まないように締めながら出口の結節になる結び目を作る必要があるからです.
シュロ縄は水に湿らせた方がしなやかでよく締まります.シュロ縄を繰り返ししごいていると,縄に毛玉のような塊や細い箇所ができますから注意しましょう.

今回は,紐の両端をそれぞれ別の場所で固定したので,使いませんでしたが”かます結び”という方法もあります.これは紐の両端を結ぶ結び方です.

 

0

Tex練習: 反応拡散方程式の解の安定性(数学的追補)

■連立線形微分方程式を解く

例えば,次の連立線形微分方程式は,行列を使って表現できます.

$$ \left\{ \begin{array}{@{\,} c @{\, } } \displaystyle \frac{d}{dt}x=y \\[0mm] \displaystyle \frac{d}{dt}y=-x \end{array} \right. $$

 $$ \displaystyle \frac{d}{dt}\left[ \begin{array}{@{\,} c @{\, } } x \\[0mm] y \end{array} \right] =\left[ \begin{array}{@{\,} cc @{\, } } 0 & 1 \\[0mm] -1 & 0 \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } x \\[0mm] y \end{array} \right]   \Longleftrightarrow  \displaystyle \frac{d}{dt}\vec{x }=M\vec{x } \\ $$

このような微分方程式の解は,初期値を $$\vec{x_{0} } =\vec{x }(t_{0})$$ として,

$$ \vec{x}(t)=\vec{x }_{0}+\displaystyle \int_{t_{0 } }^{t}M\vec{x}(\tau )d\tau  $$  となります.

これの計算は,逐次近似で無限の関数列を作れば実行できます.

$$\vec{x_{1 } }(t)=\vec{x}_{0}+M\vec{x_{0 } }(t-t_{0})$$

$$\vec{x_{2 } }(t)=\vec{x}_{0}+\displaystyle \int_{t_{0 } }^{t}M\vec{x_{1 } }(\tau )d\tau =\vec{x}_{0}+M\vec{x_{0 } }(t-t_{0 } )+M^{2}\vec{x_{0 } }\displaystyle \frac{(t-t_{0})^{2 } }{2}$$

$$\vec{x_{n } }(t)=\displaystyle \sum_{0}^{n}M^{n}\vec{x_{0 } } \displaystyle \frac{(t-t_{0})^{n } }{n!}$$

ここで,$$n \longrightarrow \infty $$とすると収束して,次の指数関数の解が得られます.

$$\vec{x }(t)=e^{M\left( t-t_{0} \right) }\vec{x}_{0}$$ ただし,$$e^{Mt} $$の定義は  $$e^{Mt}=\displaystyle \sum_{0}^{ \infty }\displaystyle \frac{1}{n!}(Mt)^{n}$$

この解は確かに, $$\displaystyle \frac{d}{dt}e^{Mt}=Me^{Mt}$$を満たします.

■線形化

現実の連立微分方程式は非線形がほとんどです.

平衡点の近傍でテーラー展開し,局所的に方程式を線形化します.

例えば,一般的な反応拡散系の方程式で$$f(u,v),g(u,v)$$は線形とは限りません.

$$ \left\{ \begin{array}{@{\,} c @{\, } } \displaystyle \frac{ \partial u}{ \partial t}=D_{u}\displaystyle \frac{ \partial ^{2}u}{ \partial x^{2 } }+f(u,v) \\[0mm] \displaystyle \frac{ \partial v}{ \partial t}=D_{v}\displaystyle \frac{ \partial ^{2}v}{ \partial x^{2 } }+g(u,v) \end{array} \right. $$

$$u(x,t), v(x,t)$$(それぞれ2種類の物質の濃度)を,平衡点のまわりでテーラー展開し,線形近似します.ただし,平衡点を$$(0,0)$$とする(このようにしても一般性を失わない).

1次の偏微分係数が作る行列(ヤコビアン)$$J$$を定義し,次のように線形化する.

   $$ J \equiv \left[ \begin{array}{@{\,} cc @{\, } } \displaystyle \frac{ \partial f}{ \partial u} & \displaystyle \frac{ \partial f}{ \partial v} \\[0mm] \displaystyle \frac{ \partial g}{ \partial u} & \displaystyle \frac{ \partial g}{ \partial v} \end{array} \right] \equiv \left[ \begin{array}{@{\,} cc @{\, } } f_{u} & f_{v} \\[0mm] g_{u} & g_{v} \end{array} \right] $$,  $$\left[ \begin{array}{@{\,} c @{\, } } f(u,v) \\[0mm] g(u,v) \end{array} \right] =\left[ \begin{array}{@{\,} cc @{\, } } f_{u} & f_{v} \\[0mm] g_{u} & g_{v} \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } u \\[0mm] v \end{array} \right] $$

$$f_{u} , f_{v} ,g_{u} ,g_{v}$$は,平衡点$$(0,0)$$での偏微分係数です.

線形化された反応拡散方程式を以下に示します.$$D_{u}, D_{v}$$はそれぞれの拡散係数(常に正).

$$ \left\{ \begin{array}{@{\,} c @{\, } } \displaystyle \frac{ \partial u}{ \partial t}=D_{u}\displaystyle \frac{ \partial ^{2}u}{ \partial x^{2 } }+f_{u}u+f_{v}v \\[0mm] \displaystyle \frac{ \partial v}{ \partial t}=D_{v}\displaystyle \frac{ \partial ^{2}v}{ \partial x^{2 } }+g_{u}u+g_{v}v \end{array} \right. $$

 

$$u(x,t)=u^{*}e^{\sigma t}\textrm{sin}\alpha x$$, $$v(x,t)=v^{*}e^{\sigma t}\textrm{sin}\alpha x$$ と置くと

$$ \left\{ \begin{array}{@{\,} c @{\, } } \sigma u^{*}=-\alpha ^{2}D_{u}u^{*}+f_{u}u^{*}+f_{v}v^{*} \\[0mm] \sigma v^{*}=-\alpha ^{2}D_{v}v^{*}+g_{u}u^{*}+g_{v}v^{*} \end{array} \right. $$

行列形式で書くと,

$$ \left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] =\displaystyle \frac{1}{\sigma }\left[ \begin{array}{@{\,} cc @{\, } } f_{u}-\alpha ^{2}D_{u} & f_{v} \\[0mm] g_{u} & g_{v}-\alpha ^{2}D_{v} \end{array} \right] \left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] $$

$$A \equiv \left[ \begin{array}{@{\,} cc @{\, } } f_{u}-\alpha ^{2}D_{u} & f_{v} \\[0mm] g_{u} & g_{v}-\alpha ^{2}D_{v} \end{array} \right] $$

は平衡点$$(0,0)$$におけるヤコビアン.

■解の安定性

$$ \left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] =\displaystyle \frac{1}{\sigma }A\left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right]      \Longrightarrow      P\left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] =\displaystyle \frac{1}{\sigma }PAP^{-1}P\left[ \begin{array}{@{\,} c @{\, } } u^{*} \\[0mm] v^{*} \end{array} \right] $$

$$ PAP^{-1}=\left[ \begin{array}{@{\,} cc @{\, } } \lambda _{1} & 0 \\[0mm] 0 & \lambda _{2} \end{array} \right] $$

が対角化されると,固有値 $$\lambda _{1} , \lambda _{2}$$,固有ベクトルは $$P\left[ \begin{array}{@{\,} c @{\, } }u^{*} \\[0mm]v^{*}\end{array} \right] $$

平衡点 $$(0,0)$$ の解が安定であるためには,すべての固有値が負でなければならない.

$$\lambda _{1}<0,\lambda _{2}<0$$ が必要十分であり,$$\lambda _{1}+\lambda _{2}<0$$では少しゆるい条件になる.

$$A$$の固有値を求めるのは面倒なので,対角化により$$Tr$$は変わらない$$Tr[A]=Tr[PAP^{-1}]$$を利用し,ゆるく評価すると,$$Tr[A]=f_{u}+g_{v}-\alpha ^{2}(D_{u}+D_{v})<0$$

拡散項がない($$D_{u}=D_{v}=0$$)時の安定性から $$f_{u}+g_{v} < 0$$が成立するので,

例えば, $$f_{u}>0, g_{v}<0$$,$$\left| \begin{array}{@{\,} c @{\, } }f_{u}\end{array} \right| <\left| \begin{array}{@{\,} c @{\, } }g_{v}\end{array} \right| $$が得られます.

$$u$$は加速剤,$$v$$は阻害剤として働き,互いの解が安定化することがわかります.

 

0

ナポレオンの定理の証明

正3角形であるための必要十分条件は「3つの内角すべて(すくなくとも2つの内角)60°」です.

図形の対称性から,内角の1つが60°であることを証明すれば済みます.

これは,補助線1本引けば自明です.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■さて,ここに出てきた6辺形には面白い性質があるのを見つけました.

この6辺形の中にある正3角形の中に点Pを中心になるように,正3角形の外の6辺形の部分を折り込むことができます.

0

ナポレオンの定理★

ナポレオンが発見したといわれるナポレオンの定理とは次のようなものです.

ナポレオンの定理
任意の⊿ABCの各辺上に正3角形を作図し,それら3つの正3角形の重心をD,E,Fとする.D,E,Fを結んでできる⊿DEFは正3角形である.

なかなか美しい形の定理ではありませんか,ナポオンの名を冠するのにふさわしい定理だと思います.ただし,ナポレオンが発見したかどうかは記録がなくわかりません.

ナポレオン (1769 -1821) は数学好きです.
陸軍幼年学校で,代数,三角法,幾何などを勉強し,数学で抜群の成績をおさめ,1784年にパリの陸軍士官学校に入学.数学が役に立つ砲兵科へと進みます.騎兵科,歩兵科でなく砲兵科に進んだのも戦術の時代の流れを見据えての決断でしょう.砲兵司令官,将軍,皇帝になりました.この時代にフランスには多くの数学者がいました.ラプラス,モンジュ,フーリエなどが近くにおり,エジプト遠征 (1798 年) にはモンジュやフーリエが同行しました.
ナポレオンは数学が大好き,このような幾何問題を考えるのが楽しみで,きっと定理を発見したのだと私は想像します.

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 証明

与えられた任意の3角形を⊿ABCとします.その各辺上に作図した正3角形のそれぞれの重心がD,E,Fです.
点Oは⊿ABCの垂心(⊿ABCのそれぞれの辺の垂直2等分線が交差する点)で,点D,E,Fは,この垂直2等分線上にあります.

色々な角の角度は図中に記入してあります.我々が証明すべきことは,⊿DEFが正3角形であることで,例えば,∠DFE=60を証明すれば済みます.考えてみてください.

ヒントは,∠BFE=∠BXC  と  ∠AFD=∠AXC を証明することです. 

 ➡ 解答(証明)

0

縞模様形成とチューリングの反応拡散系

エンゼルフィッシュの縞模様やヒトデの星型はどうしてできるのでしょうか?
コンピュータの発明や暗号解読で有名な天才数学者アラン・チューリングが,”The chemical basis of morphogenesis”という論文を1952年に発表しました.今日,受精卵が細胞分裂を繰り返し分化し生物組織が出来ていく胚発生過程は遺伝子情報にプログラムされていることは公知です.1952年にチューリングが発表した理論は,「反応拡散系」が条件を満たせば,パターンや構造を自己成長形成するというものです.反応拡散系と言うのは,2つの物質(モルフォゲンと呼ぶ)が,反応し合いながら組織を介して拡散するもので,初期状態は均一であったものが,ランダムな外乱により,物質の濃淡の波が生じその波が生物の形や模様をつくりだすというものです.この数式でつくり出される模様は「チューリング・パターン」と呼ばれますが,コンピュータ・シミュレーションで描き出すと,条件により,動物の模様にそっくりな縞模様が出現したり,ヒトデの形を作ったりします.手の指が形づくられていくのは,その設計図が遺伝子により決定されているからと考えられていますが,もしかしたら,「指の形成はチューリングの理論のように波がつくっているのではないか」という論文が最近発表されたそうです.遺伝子はからだの構造の基本を決める設計図で,例えば,肺の形成の初期に気管支の分岐などを作るが,細かい肺胞の形成まではその設計図には書かれておらず,チューリング理論のように,現場の細胞同士のやり取り(反応と拡散)で作り上げられて行くのだろうと,近藤滋氏は言っています.

1952年に提唱されたチューリング理論は,現実の生物分野でそのような実験的証拠がなかったので,その後長い間,机上の空論と思われていました.1995年,近藤滋は,海洋エンゼルフィッシュのポマカンサスには,縞模様が皮膚に固定されていないことを発見しました.体の成長とともに,単純に比例して拡大する哺乳類の皮膚のパターンとは異なり,ポマカンサスの縞模様は,体の成長にともなうパターンの連続的な再配置が起こる.そして,縞間のスペースが維持されるという実験事実を観測しました.

実際,チューリング理論に基づくシミュレーションは,成長とともに形成されるパターンを正しく予測できたので,この理論の正しさを支持するものです.

■ チューリングの反応拡散系方程式
存在する2つの物質(モルフォゲン)が,反応したり拡散したりするのは,遺伝子情報で制御されるわけでもなく単純な化学反応で,以下の連立方程式で記述できます.u(t,r),v(t,r)は振動し,いろいろな形が形成されます.

 

 

 

 

 

 

 

 ■数学的補足
チューリングの反応拡散方程式の解の安定性を調べる数学について
(解が不安定(暴走)では,縞模様ができません)
しかしながら,テキストのメルマガで数式を多用することができませんので,

ここでは,言葉で説明するにとどめます.
微分方程式の解は指数関数であること.
反応項f,gはそれぞれ物質の濃度u,vの関数で,平衡点の周りでテーラー展開(1次の項まで)して線形化します.
このような連立線形微分方程式の性質は,ヤコビアンと呼ばれる行列Aで決まるが,
この行列Aの固有値の実部がすべて負であれば,解は安定になります.
行列Aの固有値を求めるのは面倒なので,条件を緩くして,行列Aの対角要素の和(固有値の和に同じ)が
負であるとして,さらに,拡散係数も0の場合から始めると,結局,f_u+g_v<0が得られます.
これは,促進剤と阻害剤が拮抗して働き,若干,阻害剤が強い条件を意味し,このようなときに縞模様が形成されます.

⇒ 数学追補

0

(引用)チューリングの反応拡散理論

■Turing AM. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641):37-72, 1952.
形態形成の主要な現象が,モルフォゲンと呼ばれる(互いに反応し組織を介して拡散する化学物質)の系で説明できることを示しました.初期状態は全く均一の系ですが,ランダムな外乱によって引き起こされる均一平衡の不安定性により,パターンや構造が発展する可能性があります.このような反応拡散系は,生物学的には珍しいシステムですが,数学的には便利な孤立した細胞のリングの場合にある程度詳細に考慮されます。
調査は主に不安定性の開始に関係しています。これが取ることができる6つの本質的に異なる形式があることがわかります。最も興味深い形では、定常波がリングに現れます。これは、たとえば、ヒドラの触手パターンや渦巻きの葉の原因となる可能性があります。球体上の反応と拡散のシステムも考慮されます。
そのようなシステムは原腸形成を説明しているようです。 2次元の別の反応システムは、垂れ下がった模様を思い起こさせます。また、2次元の定常波が葉序の現象を説明できることも示唆されています。
この論文の目的は、受精卵の遺伝子が,生物の解剖学的構造を決定する可能性のあるメカニズムを議論することです.この理論は新しい仮説を立てません.特定のよく知られた物理法則だけで多くの事実を説明するのに十分です.この論文を完全に理解するには、数学の十分な知識が必要です.若干の生物学,基礎化学,読者がこれらすべての専門家になることは期待できないので,多くの基本的な事実を説明しました(それらは教科書で見ることができますが,省略すると論文が読み難くなるので).

■Kondo S and Asai R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus.Nature, 376(6543):765, 1995.
1952年にチューリングは,反応拡散系と呼ばれる分子的機構仮説を提案しました.これによると,均一な初期状態から周期的なパターンを作り出すことができます.形態形成でのパターン形成現象を説明するために,この反応拡散に基づいて多くの理論モデルが提案されましたが,生物学分野で,このような系の存在の決定的な実験的証拠はありません.海洋エンゼルフィッシュのポマカンサスには,皮膚に固定されていない縞模様があり,体の成長で単純に比例して拡大する哺乳類の皮膚のパターンとは異なり,ポマカンサスの縞模様はパターンの連続的な再配置により線間のスペースを維持します.パターンの変更はストライプの構造によって異なりますが,チューリング系に基づくシミュレーションプログラムは,将来のパターンを正しく予測できます.実際のパターンの再配置とシミュレートされたパターンの再配置の顕著な類似性は,反応拡散波がポマカンサスの縞模様の実行可能なメカニズムであることを強く示唆しています.

■Kondo S and Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation.Science, 329(5999):1616-1620, 2010.
チューリング,または反応拡散(RD)モデルは,発達中の動物胚における自己制御パターン形成を説明する最も有名な理論モデルの1つです.実世界での関連は長い間議論されてきましたが,多くの説得力のある例がモデルを取り巻く懐疑論の多くを説得しつつあります. RDモデルはさまざまな空間パターンを生成できます.数学的研究により,それぞれに必要な相互作用の種類が明らかになり,さまざまな形態現象の実験での仮説として,このモデルが適用できる可能性があります.
このレビューでは,RDモデルが効果的に組み込まれている実験研究の例を使用して,モデルに不慣れな実験生物学者のためにこの理論の本質を説明します.

0

AIの時代

1986年から始まった米国の数学月間MAMは,2017年から統計学を表に出して数学・統計学月間MSAMに衣替えした.これは,(2011年)解明進む複雑系,(2012年)統計学とデーターの氾濫,(2013年)持続可能性の数学,(2016年)予測の未来,と続くMAMテーマの流れから予想されたことです. 数学と統計学は,インターネット・セキュリティ,持続可能性,疫病,気候変動,データの氾濫,に見る現実世界の問題に対して重要な役割を果たしています.医学,製造,エネルギー,バイオテクノロジー,ビジネスなどの分野でも,日々新しい結果や応用が生まれています.数学と統計学は,システムや方法論がどんどん複雑化する技術世界で,革新の重要な推進力になっています. 些細な事故が雪崩となり大規模災害を惹起する危うさを持っているのが複雑系です.限界ぎりぎりで稼働している複雑系であるインフラの制御はAI(ディープラーニング)がなければどうにもなりません(ただし,事故の復旧では人間自身の手が必要で,AIで解決できるものではありません).また,医療診断の画像識別エキスパートシステムでは,専門診断医を凌駕する状況であります.

日本政府の「AI戦略」は,AIを理解し各専門分野に応用できる人を,遅ればせながら2025年までに年25万人育てる体制を目標に掲げました.経済産業省が2019.3に出した報告書「数理資本主義の時代」(違和感のある表題だ)は,数学が国富の源泉であると謳い,GAFAを見ればそのような時代の流れであることは明白です.しかし,ことさらに数学をそのように強調し,強者になるための道具にすることには違和感があります.高い年収が得られるので数学を職業とするでは本末転倒と言わざるを得ません.
さらに経産省の当該報告書(p.19)には,<工学出身者に「数学は役に立たない」という時代遅れの先入観が残っている>との記述があます.時代遅れの先入観と言わようが,あえて言うと,私は「数学では物は作れない」と思っています.
アナログ制御の時代を担い応用数学を発展させた工学の扱う対象は物や反応であるのに,データサイエンス(コンピュータがなければ何もできない)の働きかける対象はいつも数値(データ)であり解析にとどまるからです.ただ,工学であれデーターサイエンスであれ,どちらも数学なので,「数学は役に立たない」とは誰も思ってはいないはずです.かつて,電気電子,計測などの工学部が応用数学の研究と教育を担っていた時代があったが,コンピュータの発展により,数学能力の低下はあると思います.数学理論を何も知らずとも優れたコンピュータ・ソフトを操り,良い結果を得るのをしばしば目撃したし,ディープラーニングのブラックボックス化の弊害もあると思います.今は,データーサイエンスの基礎を支える数学を押さえる時期であると思います.経産省の報告書の先に触れた部分は,<企業の工学出身者の時代遅れ先入観がAIを阻害している>と言いたいようだが,経産省の指摘を待つまでもなくこの分野の研究は多くの企業で先行していた.例えば,1987年に開設したリコーカリフォルニア研究センターでは,1990年にPeter E Hartを所長に迎えAIの研究を始めている.2000年に,Richard O Duda, Peter E Hart, David G Storkが”Pattern Classification”(2nd edition,尾上守夫監訳)を出版している.これはスタンフォード大の授業でも用いられ発売後半年で4,000部売れた.米国AI研究者の数学基礎の確かさと層の厚さが感じられる例である.

日本のある大学のポスターで,基幹工学(機械,電気・電子,工業化学),先端工学(ロボット,AI・データーサイエンス),建築工学の3分類の新し構えを見受けます.また,立教大学が2020年4月に開設する国内初となるAI(人工知能)に特化した大学院「人工知能科学研究科」(修士課程)は,機械学習やディープラーニングを中心としたAI領域についての学科で,機械学習の数理モデルを深く理解し,高度な情報科学や統計学の知識を持ち,論文から最新のAI技術を実装できる人材育成を目指すという.
ベイズ決定理論,最尤推定,パーセプトロン,多層ニューラルネットワークなどの基礎教育を行うのは必要ですが,数学以前の数理モデルを作る時点で,正しい解釈ができる能力,常識,読解力,AI倫理などはさらに重要であると考えます.統計学もAIも解釈次第でとんでもない結果を導く可能性があります.

0

掛谷の問題

前号では長さの問題をみましたが,今回は面積について少し考えましょう.
(掛谷の問題)
平面に置いた長さ1の針(線分)を平面上で1回転することができる平面図形のうちで
面積が最小なものは何かという問題です.この問題は1916年に掛谷宗一が提起したものです.

可能な図形候補の4つの図を,http://www.araiweb.matrix.jp/semi208/KakeyaProblem.html から引用します.

 

 

  

 

 

 

 

 

多分,皆さんの思いつく答えは,この4つのタイプのうちの一つでしょう.

(1) 直径1の円 面積はπ/4=0.7854
(2) ルーローの3角形 面積は(πー√3)/2=0.7048
 ルーローの3角形というのは,1辺1の正3角形の各頂点を中心に半径1の円弧を描いて囲まれた図形です.
 ルーローの3角形を断面に持つ棒は,円柱と同じように定幅曲線なのでコロとして使えます.
 その面積は,√3/4+3x(π/6-√3/4)=π/2-√3/2 と求まります.
(3) 高さが1の正3角形 面積は1/√3=0.5774

これらの図形の面積は,(1)>(2)>(3)の順で小さくなっています.
それで,(3)が最小面積の答えかと言うとそうでもありません.
(4)のように凸でない(内側に反った曲率の星型)図形でも針の回転が可能で,
そして,(4)の図形の面積はいくらでも小さく(面積0に)できることがわかります.
これは,1919年のベシュコビッチの定理からの一つの帰結でもあります.


さて,面積とは何かというのは難しものです.
われわれが常識で使っているのはジョルダンの面積です.
フラクタル図形の面積0ではジョルダンの面積の定義では面積が測れません.
無限回の操作がからむ図形にも使えるのがルベーグの面積です.

 

0

曲線の長さの不思議

http://twitpic.com/8qlket に,√2=2 というパラドックスが提起されています.
このパラドックスの原因は,非常に興味深いので,ここで考察することにします.

問題1

 

 

 

 

 

 

一辺の長さ1の正方形の対角線の長さは√2ですが,上図のように,X軸方向に1,y軸方向に1動く経路(n=0)を考えると長さは2になります.以降,このような折れ曲がり経路を繰り返して行きます(n=1, 2, 3, 4,・・・・).折れ曲がりを繰り返して行っても,いつも経路の長さは2で変わらないことがわかるでしょう.このような碁盤の目のような経路の長さは,マンハッタン距離と呼ばれることもあります(マンハッタンの市街の道は,碁盤の目の様だそうです).マンハッタン経路は,n→で対角線に限りなく近づきますので,√2=2 というパラドックスになります.

どこがいけないでしょうか?

問題2

同様な問題に以下の様なものがあります.https://note.com/keyneqq/n/n2ead38a59af5
半径1の円の円周は2πです.半径1の円に外接する正方形の一辺の長さは2ですから,半径1の円周のマンハッタン距離は8です.n=0から出発してx方向,y方向への折れ曲がり数を繰り返しマンハッタン経路は,限りなく円周に近づきますが,マンハッタン距離は8のままです.
従って,2π=8,すなわち,π=4となります. どこがいけないでしょうか?

 

 ■さて,これらの問題に見られるパラドックスは,どこに原因があるのでしょうか?
これらのすべての曲線はいずれも連続であることは確かです.碁盤の目に沿って辿るマンハッタン経路を回細かく繰り返した曲線は,至る所ギザギザで,微分不可能な曲線になっており,曲線の長さを微分係数を用いた積分で定義することができません.2点間(x1,y1),(x2,y2)のマンハッタン距離の定義は|x1-x2|+|y1-y2|で,碁盤の目(メッシュ)を細かくすればするほど,マンハッタン経路はいくらでも目的とする曲線に近づけることはできるのですが,マンハッタン距離は不変です.
(メッシュで定義される碁盤の目のデジタル世界でも,差分により微分係数が定義できますが,そのときもユークリッド距離を用いて定義します)

マンハッタン経路で定義される曲線は,無限回折れ曲がりを繰り返すことで,目的とする曲線にいくらでも近づきますが,マンハッタン距離が変化するわけはありません.

繰り返しの手順を見て,折れ線のフラクタルとみなしフラクタル次元を求めると,この折れ線の次元はやはり1次元になりました.折れ線の幅がフラクタル次元を生むというような説明も見かけましたが,そうではなくフラクタルはこの問題では関係ありません.この問題で人を驚かせるパラドックスの原因は,単純に距離の定義の違いによるものです.
定義が違うものなので違って当然なのですが,2つの曲線は限りなく近づいて行きますので,定義の違いを忘れて同じ長さだと思ってしまうのが間違いの源です.

0

円に内接する正5角形の作図

半径1の円に内接する正5角形の1辺の長さを求めましょう.
この正5角形の1辺の長さをxとします.
△BACと△ADCは相似(相似比が黄金比Φ)で,形は2等辺三角形(等辺xとすると,底辺Φ・x)です.
Φ・x=x+(x/Φ) ですから,Φは黄金比の方程式 Φ2ーΦー1=0を満たします.
この方程式の解(Φ>1のもの)は,Φ=(1+√5)/2 です.

 

 

 

 

 

 

 

 

 

 

 ■次に,△BCEと△BOFとが相似であることを利用し,
1:(Φ・x)=OF:CE=(1-y):(x/2) が成立するので, y=1ー1/(2Φ)  

ただし,y=√[(x/Φ)2-((Φ・x)/2-x/Φ)2]=√[x2ー(Φ・x/2)2]=x√[1-(Φ/2)2] 

x=y/√[1-(Φ/2)2]=[1-1/(2Φ)]/√[1-(Φ/2)2]=(√[10-2√5])/2=1.1756

■ 作図
半径1の円に内接する正5角形の一辺の長さx=(√[10-2√5])/2を作図する方法
(証明)ピタゴラスの定理を2回使います.

 

 

 

 

 

 

 

 

 

 

 

■ 万華鏡への応用

0

PISAの読解力調査

■OECDのPISA(Programme for International Student Assessment)国際的な学習到達度調査で,日本の急激な読解力低下(2018年)が指摘されています.PISA調査は15歳(高校1年)を対象に,読解力,数学的リテラシー,科学的リテラシーの三分野について,3年ごとに実施する調査で,国立教育政策研究所が担当しています.
直近の2018年の試験では,読解力が前回の8位から15位に落ちました.

■日本の読解力の平均得点は504点で,OECD加盟国(移民など多数含む)の平均(487点)は上回ったものの,前回(2015年)から12点下がりました.内訳は408点未満の低得点の生徒の割合が全体の約17%を占め,前回調査から4ポイント増えている.生徒の6人に1人が十分な読解力を持っていないことになる.これほど低得点層が増えたにもかかわらず,平均点の低下は少なかった.これは,文章を解さない児童が増えたが,十分な読解力を備えた児童も同時に増える「二極化」が進んでいるということを意味します.得点分布が,平均中央に山を持つ標準的なグラフでなく,中央の左右に2つの山ができるグラフへと変化しました.
そのような変化は,少なくとも2つの因子が存在することを意味します,本来の読解力だけでなく,影響を与えるもう一つの因子なんでしょうか?それは家庭の経済力かもしれません.現在の日本社会では,貧富の2極化も進んでいますから.あるいは,文科省の言うようにデジタル機器への適応の問題である可能性も否定はしません.

■PISAは,紙に手書きで解答する方式から,パソコンで入力する方式に変更(2015年)したそうです.文科省は「日本の生徒は機器の操作に慣れていないことが影響した可能性がある」と分析しています.パソコンを介したテストの方式を私は良く知りませんが,まず,ディスプレイに問題文が表示され,次に進むと問が表示され,これに応えるという後戻りのできない方式ではないでしょうか.これに解答するのはかなり難しくなる.印刷物を介したテストでは,問を見てからまた問題文に戻り確認して答えるというやり方をすると思います.文科省の分析が,このようなテスト方式の変化のためであるというなら私もそうだろうと思います.しかし,「順位が落ちたのはパソコン入力に戸惑ったせいだ」との分析であるなら間違っていると思います.パソコン利用では,紙のときと違い,読解力だけでなく記憶力など総合的に影響し難しいテストに変わったかもしれません.

 

0

雪の結晶の折り紙(中谷宇吉郎雪の科学館)★

折り紙も数学ですが,この雪の結晶を折るアルゴリズムは複雑でわかりにくいです.
写真の1,2は完成した雪の結晶を,表面から見た写真(1)/裏面から見た写真(2)です.

(1)                  (2) 

 

 

 

 

 

 

 

 

 

■スタートに用いるのは,以下に示す6角形の折り紙(3)です.完成品を見ながら,
折り紙(表面側から見て)に,谷折りすべき線(赤色)/山折りすべき線(黄色)を描き込んでみました.

 

(3)

 

 

 

 

 

 

 

 

 

 

 

 

この線の通りに,谷折り/山折りをして,(4)に示す中間体が作れますから,
試行錯誤して,(4)図のような中間体を作るのを目標にしましょう.

 

(4)中間体

 

 

 

 

 

 

 

■中間体(4)の表面側に出た6か所の山尾根の部分を,平らに広げて帯状筋を作る.
この帯状筋の形成のときに,新たに山折りとなる箇所を,
折り紙(3)に青緑色の線で示しておきました.
中間体の山尾根をつぶして帯状筋にするところは,注意深くやりましょう.

0

安宅関,勧進帳

■金沢に来ていますが北陸の海は8日は荒れ模様でした(この日はサンダーバードが運休しました)。海の色の変化が美しい。虹の撮影は小梁さん。

 

 

 

 

 

 

 

 

 

 

■ここは勧進帳の舞台です.腹芸とは相手の心を思いやり察することです.忖度は権力と利益が結びついていて汚いもので,人情や腹芸とは違うと私は思います.

0

中谷宇吉郎雪の科学館

中谷が雪の研究を進めたのには,シベリア出兵の時代で,雪や着氷などが軍事研究として必要だった背景がありますが,実際にやった中谷宇吉郎の雪の研究は基礎研究です.
この地に雪の科学館を設計した建築家は磯崎新です.

■氷の結晶模型はH-O-H分子が水素結合で連鎖しており,平面ではありませんが6角形が見えるでしょう.氷の結晶の内部構造の6回対称性が,樹脂状結晶成長にも反映され,成長した雪片の外形(「雪は天から送られた手紙である」というように上空の環境で様々な形の雪片が見られます)は,どれもすべて6回対称です.

0