タグ:対称性

美術・図工 菱形12面体が見える万華鏡

菱形12面体が見える万華鏡を作りましょう.少し厚手(0.25mmとか0.31mm)のミラー紙(B5版)が手に入ると,簡単に作れます.
菱形12面体とは図1のような形で,空間を隙間なく埋め尽くすことのできる形でもあります.
菱形面ABA'B'を底面にして,立体の中心Oを結んだピラミッドADA'B-Oが,
中心のまわりに12個集まるとできる立体です.

① ピラミッドABA'B-Oの側面OAB,OBA',OA'B,OB'Aを鏡面にした万華鏡を作ります.非対称領域1/12
② ピラミッドABA'B-Oの半分のABB'-OやABA'-Oでも万華鏡が作れます.非対称領域1/24
③ さらにそれらの半分のABH-Oも万華鏡が作れます.非対称領域1/48

菱形12面体の内部には立方体が含まれますので,
立方体の1辺を2とすると,菱形面ABA'B'の対角線の半分の長さは,
AH=1,BH=√2で,OH=√2,OA=√3,OB=2となります.

         

 


 

 

 

 

 

 

 

                          図 1                                                                             図2

 底面(=菱形面ABA'B')と頂点(立体の中心O)を結びピラミッドABA'B'-Oを作ります.ピラミッドの内面を鏡面とし,外部(ピラミッドの底側)から頂点Oを覗く万華鏡です.
ピラミッドABA'B'-O,あるいは,底面が直角3角形ABHのピラミッドABH-Oの2種類の万華鏡ができます.ピラミッドの各所の寸法は図2に示します.この寸法を用いて,作った展開図を図3a,bに示します.どちらの展開図でも,Oの周りのグレーに塗った部分は切り取り,窓(=光の面)を開けます.それぞれの転開図で端辺どうし(左図ではOA',右図ではOB)を,それぞれ貼り合わせると完成(写真は図4a,b)です.

 

 

展開図のグレーに塗った部分は切り取りる.

図3a, 図3b
実際に作る寸法はこの4倍位にすると良い.

 

 

 

 

 

 

 

 

 


完成した万華鏡の外側.鏡面はピラミッドの内側.

図4a   図4b

 

 

 

 

 

 

 

 

(a)および(b)に対応する万華鏡像

 

 

 

 

 

 

 


■2つの万華鏡はどちらも菱形12面体像が見えます.図4aのピラミッドには図4bが4つ入ります(図4bの非対称領域は図aの1/4)ので,図4bの万華鏡の方が「菱形面に2mmの対称性があり」,図4aの万華鏡より対称性は高いのです.

■菱形12面体の見える他の万華鏡の例は,⇒ここに掲載します.

これらはすべて菱形12面体の見える万華鏡です.
非対称領域は,それぞれ,空間の1/8(写真1),空間の1/16(写真2,3),空間の1/32(写真4)です.1つの菱形面の中の分割数を観察すると,1(分割なし,写真1),2(写真2,3),4(写真4)であることからわかります.

 

 

 

 

 

 

 

 

 

 

  写真1              写真2            写真3             写真4

0

美術・図工 雪の結晶★

「雪は天から送られた手紙(中谷宇吉郎)」という言葉がありますが,雪の結晶が生まれ・成長した気圏の状況により,様々な形の雪片が観察できます.これらの写真の中で,絶対にありえない雪の結晶が2つあります.どれとどれでしょうか?

 (以下は,追補)
雪片の形の対称性は6mmです.これは雪(氷)の結晶の内部構造(分子配列)が外に反映されたものです.以下に氷の結晶構造の2次元模式図を示します.水分子はH2O(酸素原子O●の両側に水素原子H●が結合し,その結合角度は約120°)で,両端の水素原子は,隣の分子の酸素原子と弱い相互作用(水素結合)をしています.そのためこのような6mmの対称性の結晶になります.

 

 

 

 

 

 

 

 

 

 


(注)雪片(雪の結晶)の形は,デンドライトという形です.
これは,比較的速く結晶が成長するときにできます.
金平糖も似たような現象で出来るデンドライトといえますが,
1粒の金平糖全体で砂糖結晶の方位が揃った単結晶というわけでは
ないので,それが雪の結晶とは違うところです.

0

美術・図工 美しい図形と不思議な空間・続

東京ジャーミイの礼拝ホール

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


  

 

 

 

 祭壇の方向(西)に向かって礼拝

東京ジャーミイは,東京,代々木上原にあります.トルコ文化センターも併設されています.
この地には,昔,ロシアカザン州から避難したトルコ人によりモスクが建てられていました.
私の子供の頃,近隣の者は「マジスト寺院」と呼んでいた風情のあるモスクでした.
老朽化のため1986年に取り壊され,東京トルコ人協会の人々が中心になり,
東京ジャーミイの建設が1998年から始まり2000年に完成しました.
トルコから送られた資材を用い,オスマントルコ様式で設計され,2階の礼拝場のドームが印象的です.仕上げにはトルコ人建築家や職人が100人もかかったそうです.
毎日礼拝が行われコーランの声が流れます.特に金曜日には300人以上のイスラムの人々が礼拝に訪れます.皆,西に向かって絨毯にすわり礼拝します.ステンドガラスに西日が入ると,青い光線が,青緑色のカーペットに重なり,とても美しい光で溢れます.
イスラム教は偶像崇拝をしません.幾何学的な完璧な規則で描かれた模様が
宇宙を作った神の原理を思わせるのでしょう.
スペイン,グラナダのアルハンブラ宮殿の,さまざまな幾何学的な繰り返し模様を
表現したタイルは美しいので有名ですが,ここ東京ジャーミイも東アジアでもっとも美しいモスクと言われます.ここで見られるいくつかの幾何学模様を取り上げ鑑賞しましょう.

0

美術・図工 美しい図形と不思議な空間

説教壇

 

 
東京ジャーミイ(代々木上原,東京)にある装飾です.写真左Fig.1は説教壇の横にある装飾です.写真右Fig.2はステンドグラスです.
どちらも複雑な図形ですが美しい.
これらの図形の構成を調べて見ましょう.

 

 

 


  Fig.1                 Fig.2 
■Fig.1の図形の構成を,以下のFIg.3で説明します.
Fig.3の一番左は辺の長さが黄金比の2等辺三角形です.
つまり底辺を1とすると,等しい2辺は1.618...,頂角は36°,両底角は72°です.
真ん中の図は,正5角形の中にできる星形で,
星の頂角は黄金比の三角形にでてくる頂角36°と同じです.
一番右の図は,この星型とこの星型を180°回転したものを重ね合わせたものです.
東京ジャーミイの美しい図形Fig.1には,星形を2つ重ね合わせたものが中心にあることに,お気づきでしょうか.

 

 

 

Fig.3

 

 


Q:星形をこのように重ね合わせた図形の対称性は?
A:まず,星形の対称性は.点群5mです(5は5回回転対称軸,mは鏡映面).
2回回転対称軸2が生じるように重ね合わせたので,
重ね合わせた星形の対称性は,結局,2⊗5m=10mmの点群になります.
あるいは,星形の点群5mを「法」にすると,10回回転操作(36°の回転)は
{1,10(mod5m)}のような,位数2の対称操作として理解できます.
注)数学の言葉を使うと,次のように表現されます.
点群10mmは,点群5m(これは点群10mm内の正規部分群)を核として,
群{1,10(mod5m)}に準同型.
この考え方は,奇妙なもので,36°回転を2回続けると元の星形に重なるから
これを振り出しに戻ったと見なすと,我々の3次元ユークリッド空間では
360°回転しないと元に戻らないのに,この奇妙な空間では,
2x36°=72°回転すると元に戻ることになります.
■Fig.2のステンドグラス窓の模様は,繰り返し模様の一部です.
この繰り返し模様をFig.5に再現してみました.

 

 

 

 

 

 


       Fig.4             Fig.5

「正5角形と180°回転した正5角形を重ね合わせた」星型パーツ(点群10mm)を内角が108°と72°の菱形を単位胞とする格子に配置して(Fig.4)繰り返し模様を作ります(Fig.5)です.
この菱形格子は正6角形(正3角形)のように見えますが,
上下の方向が左右の方向に比べてすこし長く,歪んでいます.
正5角形や正10角形(どちらも最低でも5回対称性がある)を周期的に並べることは不可能ですから,5回対称性が全域で支配するような格子はできません.「正5角形とその180°回転したものを重ね合わせた」星型パーツの対称性(10mm)は,そのパーツの内部だけを支配する(局所的)ものです.
この繰り返し模様の対称性(平面群)には,2回軸と水平および垂直に鏡映面があり,記号でいうとP2mmの対称性です.

0

美術・図工 エッシャーの「極限としての円」★★

■エッシャーのトリック(引用先:コクセター論文)

M.C.エッシャーの「極限としての円」Circle limit IIIを鑑賞しましょう(図左).
この円盤内は双曲幾何の世界(ポアンカレの円盤モデル)です.
この円盤内を旅する人は,円の縁(世界の果て)に近づくほど時間がかかる.
つまり,[世界の果てに到達するには無限の時間がかかる]ようになっています.
この世界で定義される直線(最短時間で移動できる経路)は,円盤世界の縁で直交する円弧です.
エッシャー作品(図(左))の円盤は,魚の流れを示す白い線で分割された双曲面の
[4,3,4,3,4,3]分割のように見えますが,実は図(中)に示すような,黒い線で分割した{8,3}正則分割です.
白い線は,双曲幾何の円盤世界の縁に80°で交差し,直線ではないのです.
図(中)の正8角形の黒い線がこの円盤世界の直線であることは,図(中)に書き込んだ赤い円弧
(いずれも円盤縁で直交する円弧)を見れば理解できるでしょう.
 

 

 

 

 

 

 

 

 

 

双曲平面の正8角形タイルは,双曲平面の直線(円盤の縁で直交する円弧)で囲まれています.
タイルの大きさは円盤の縁に行くほど小さく見えますが,円盤内は無限に広い双曲幾何平面なのですべて同じ大きさです.
1つのタイルの中には4匹の魚がおり中心に4回軸があります.
正8角形の頂点には3回軸があり,魚の白い流れは3回軸の場所に集まっています.
エッシャーは{8,3}分割に用いる直線をわざと隠し,白い流れが分割であるようなトリックを見せます.
もちろん,白い流れの円弧(直線ではない)に関して鏡映対称はありません.

0