2014年5月の記事一覧

インドラの真珠

◆映像が果てしなく繰り返す「インドラの網」
網の上に置かれた真珠は互いに反射し合って,他の真珠を映すだけでなく,他の真珠の映る自身の姿をも映します.世界全体が真珠一つ一つの上に写り,またその姿が別の真珠に映り,これが永遠に続くのです.
”インドラの真珠”
D.マンフォード, C.シリーズ, D.ライト, 小森洋平 (翻訳),日本評論社より

■仏教では,「宇宙の一切のものが,一切のものの原因になっていて,
無限の過去からの無数の原因が,どの一人にも
それぞれ反映されている」と考えます.
これはまさに単純な因果列ではなく複雑系の考え方ですね.
宮澤賢治に「インドラの網」という小品があります.
インドラの網目に縫い付けられた珠玉は,互いに映じ合うと同時に,
自分自身も輝いています.

◆「アポロニウスの窓」という美しい図形は,互いに 接し合う3つの円に接する
第4の円を描くのだが,これを次々と繰り返して生まれる円の中の世界だ.
4つの円の曲率をa,b,c,dとすると,
2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2 というデカルトの発見した定理が
成り立ってい る.
⇒三角形の七不思議 (ブルーバックス) 細矢 治夫

◆美しいアポロニウスの窓を見ているといろいろ な思いが拡がる. それは,
2つの円が互いに接し かつそれらがアポロニウスの窓の外周円とも接し ているとき.これらの接点を通り外周円と直交する円を想像し,それを反転円とすれば,
この反転円で分断された2つのアポロニウスの窓の世界は互 いに鏡像となることだ.もし反転円がどんどん小 さくなれば,その小さな領域に大きな世界がどんどん繰り込まれていき,不思議なフラクタル世界 の美しさがある.

0

ApolloniusGasket(アポロニウスの窓)

フラクタルの美しさがあり気に入ってます.
Cinderellaというソフトを用いて描きました.
写真: 緑色の円の外にあるピンクと黄色の円を,緑色の円で反転すると,緑色の円内のピンクと黄色の円に写せます.写されたこれらの大きさはその上のグレーの円と同じ大きさです.色々な反転円を考えれば,無限にある大小さまざまな大きさの円はみんな同じ大きさで,円盤内の世界は無限に広いと言い張るのも良いでしょう.
緑色の円の外にあるピンクと黄色の円を,緑色の円で反転すると,
緑色の円内のピンクと黄色の円に写せます.
写されたこれらの円の大きさは,その上のグレーの円と同じ大きさです.
色々な反転円を考えれば,無限にある大小さまざまな大きさの円は,
みんな同じ大きさで,円盤内の世界は無限に広いと言い張るのも良いでしょう.

0

英国MMPのplusマガジン

英国MMPのplusマガジンの42号と31号から論文3編の翻訳です.
⇒ http://sgk2005.sakura.ne.jp/ 
色々な分野に数学が使われているのを見るのは大変興味深い.
これら3篇の全翻訳は最下行にあるpdfファイルを開いてご覧ください.
■movies
ジェラシックパーク,ロードオブザリングズなど本物そっくりの映画やゲームの世界をつくる3次元映像は数学を使って実現される.光線追跡,事前計算放射輝度伝搬,ラジオシティが,本物そっくりのライティングをリアルタイムで可能にする.3次元の物体回転のグラフィックスではHamiltonの4元数が活躍している.
■buildings
Foster+パートナーグループが,ロンドンシティホール,ガーキン(巨大なきゅうり形)などのランドマークを建設している.環境に影響を与える気流や,内部の反響や,エネルギー効率をシミュレーションする.形状を関数で表現するパラメータモデルが形状の探索に使われる.また曲面でできている外形を平面で作るために,表面の分割に幾何学が使われる.
■memory
πの記憶のギネス記録は,原口氏が2006年に達成した100000桁です.語呂合わせの記憶法では日本人は圧倒的に有利です.数の記憶のメカニズムを解説しています.
----------------
plus42_movies.pdf
plus42_buildings.pdf
plus31_remember.pdf

0

日本および米国の数学まつり

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.05.11] No.004
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■数学まつり
多くの人々が数学に関心をもつようになるイベントを数学月間では応援しています.
講演会,講習会,数学カフェ,ワークショップ,様々な活動形態がありますが,
子供たちが楽しめて数学感覚が身に着く”数学まつり(フェスティバル)”というのが
あり,英国のMMPでも米国のMAMでも大変人気があります.
今年の米国MAMでも,最終日はMoMathの話題でした.

国立数学博物館MoMath(National Museum of Maths)は,米国唯一の数学博物館で,
ニューヨークのマディソン・スクエアに,2012年12月15日オープンしました.
ここには30以上の対話型の展示があります.
東京でもMomathのような常設の数学展示のあるものは,科学技術館,リスーピア,
東京理科大「数学体験館」などがあります.一度見学されると良いでしょう.

■とっとりサイエンスワールド
常設展示ではありませんが,毎年夏に開催される「とっとりサイエンスワールド」
--美しい数学・楽しい算数--はユニークな数学体験フェスティバルです.
小さい子供からお年寄りまで楽しみにしている市民イベントに成長しました.
鳥取県と鳥取県数学教育会の主催で,
鳥取大学と地元の先生方や生徒がボランティアで運営しています.
今年も,米子(8月2日),鳥取(8月31日),倉吉(9月21日)で実施予定です.
私も万華鏡ワークショップで参加しています.
万華鏡は美しいばかりでなく,対称性の数学と関係があります.

■米国MAMでMoMathが紹介されました.
MoMathとは,冒頭で紹介したように,2012年12月15日にニューヨークに
オープンした数学に特化した国立博物館です.
ホールの展示で目立つのは,正方形の車輪の3輪車が滑らかに走る光景です.
たいへん興味深いので,床面の曲線がどのような形であるかを計算してみました.
ここに掲載する結果(Fig.1)は,2013年7月22日の数学月間懇話会(第9回)で
谷が発表したものです.
ついでに応用問題として計算した3角形の車輪の結果を(Fig.2)に掲載します.

注)2013年10月2日に開設された東京理科大学「数学体験館」にも
同じような4角い車輪の車の展示があります.

Fig.1 四角形の車輪

http://sgk2005.saloon.jp/blogs/blog_entries/view/46/d4ca3f8ca64cfd0e784cf3f249e2461e?frame_id=54

Fig.2 三角形の車輪

http://sgk2005.saloon.jp/blogs/blog_entries/view/46/c81205d7276bfb68cd5bfe06f79bec97?frame_id=54

■編集後記
 メルマガ1号はtxt形式,2号はhtml形式,3号はtxt形式でお送りしました.
みなさん見え方は如何でしょうか?まだ不慣れなので苦労しています.
html形式の場合は,メール配信されると下添え字などが不自然に見えますね.
良い方法をご存知の方はお教えください.

 まぐまぐにすべてのバックナンバーを公開していますから
http://archive.mag2.com/0001633088/index.html で
htmlメルマガを見るを選択すると正常に見えます.

 メルマガはメールで軽快に見たいものです.
そこで,基本的にtxt形式で発行して行こうと思っています.しかし
どうしてもtxtではわかりにくい添え字のある数式,図が必要な場合は
html形式を使うことがあります.その時はまぐまぐのバックナンバーの公開で見るか,
私のブログのメルマガ倉庫の中にあるにあるイメージ形式のものを見てください.

 このメルマガは,公式HPの記事(煩雑で読みにくい)から面白いものを選択し,
完結した読み物になるように編集・書き下ろしています.ブログも同様です.
メルマガは内容重視で,できるだけ言葉txtでわかるようにしたいと思います.
メルマガにない美しい図などは私のブログの方でご覧ください.
イベント情報などもご紹介します.皆様からの情報やご意見ご感想をお寄せください.

0

会議・研修 無限の脅威★

002号はHTML形式で発行したため,txtメールでは,下添え字などに乱れがあります.
まぐまぐサイトでhtmlメルマガを見るを選んで見てください.
━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2014.05.09] No.002
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■■無限大の脅威(2014年米国MAMの話題より)
今回は,奇妙な数学の話です.数式はうまく表示できているでしょうか?
■発散する級数
S=1+2+3+4+....+n+....=-1/12
正の整数すべての総和が無限大でなく-1/12であるという.正気の沙汰なのか?
このとんでもない結果は,1748年に偉大なオイラーにより導かれた.
発散する数列は悪魔の発明であり,無限級数を用いると,どんな結論でも導くことができる.
発散する級数の研究は,アーベル(1802-1829)に端を発する.
数学者がこの悪魔の細部を解決するのに続く百年を要したのだ.
すなわち,リーマンの解析接続の理論(1859)を待ち理論的解決した.
現代では,物理学(超弦理論,量子計算)や数学(ζゼータ関数)で利用している.
リーマンは素数の分布を調べるためにζ関数に解析接続をした関数の0点を研究し,
リーマン予想を提示した(1856).これはまだ解かれていない.
■オイラーの発見が現実に
オイラー+リーマンの ζ関数は無限級数の形で定義される.
ζ(s)=1+2-s+3-s+4-s+5-s+....
この関数は,実部が1より大きいRe(s)>1複素平面で収束するが,
実部が1あるいは1より小さいRe(s)=<1複素平面では発散する.
そこで,全複素平面(ただし1は極)に,ζ 関数の定義域を拡張
するのに解析接続という手段が役立つ.
S=ζ(-1)=1+2+3+4+5+....
S1=1-1+1-1+1-1+....=1 奇数項までの和
           0 偶数項までの和
この和は,偶数項で止めれば0,奇数項まで止めれば1になる.
しかし,解析接続という理論を使うと1/2になることを以下に示す.
f(x)=1+x+x2+x3+x4+x5+....=1/(1-x)
この多項式は公比xの等比級数だから,|x|<1なら収束し1/(1-x)になる.
もとの多項式は|x|<1の外では発散するので定義できないが,
級数を解析接続した関数1/(1-x)に繋ぎ,形式的だが
x=-1を入れると 1/2 が得られる.
S1=f(-1)=1-1+1-1+1-1+....=1/2
級数S1, S2 などを等式と見立て加減演算をし,Sを求めてみよう.
o+oなどの無限大を数値のように演算しているのが気持ち悪いが
解析接続で収束した級数を用いているので実は正しい結果になる.
S2=1-2+3-4+5-6+.... とすると,
2S2=1-2+3-4+5-6+....+[1-2+3-4+5-6+....]=1-1+1-1+1-1+.... =1/2
ゆえに,S2=1/4が得られる.
S-S2=1+2+3+4+5+6+....-[1-2+3-4+5-6+....]=
=4(1+2+3+....)=4S
ゆえに,S=-S2/3=-1/12
■参考
http://www.mathaware.org/mam/2014/calendar/infinity.html
超弦理論入門,大栗博司,ブルーバックス
リーマン予想を解こう,黒川信重,技術評論社

0