2019年3月の記事一覧

美術・図工 伝統文様の練習問題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.26] No.260
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
周期的な2次元平面の互いに独立な並進ベクトルは2方向とれます.
これら2本の並進ベクトルが挟む平行4辺形を単位胞といいます.
並進ベクトルの組み(単位胞の形)を対称性で分類したものがブラベー格子です.
2次元のブラベー格子には,図に示す5種類があります.
そして,それぞれに対応する格子の図も掲載しておきました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

さて,以下に伝統文様を10種挙げました
図の中に赤色ベクトルで,並進の周期を書き込んだ図もあります.
1.書き込んでない図にも赤色ベクトルを書き込んでみましょう.
赤色ベクトルの選び方はいろいろ可能ですが,
単位胞の形(赤色ベクトルで囲まれた平行4辺形)が
A正方形,B長方形,C120°の菱形,D任意角度の菱形, 
の4種類のどれかにあてはめるようにとれます.
2次元のブラベー格子の5種類のうち,一般形の平行4辺形に属する伝統文様は,
ここの例には挙げていません.
2.それぞれの伝統文様は,A,B,C,Dのどのタイプに属するでしょうか.
3.伝統文様のいくつかを,どこかで見たことがあるでしょうか.
私は立涌を壁紙で見かけます.

0

直線定規とコンパスを繰り返し用いた作図

■ 円に点Bを通る2直線が交差しているときに,方冪の定理が成り立ちます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■2つの長さの加法,減法は簡単です.以下の図をご覧ください:

 

 

 

 

 

 

■結局,直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
加法,減法,乗法,除法,開平です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

 

 

 

 

 

 

 

 

0

万華鏡のクイズ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.11.06] No.240
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
私は色々な万華鏡を作っています.
今日は万華鏡のクイズを2つ載せますので,お考え下さい.
(1)2枚鏡(ブリュースタ)の万華鏡
Q:
下の2つの映像は,2枚鏡のある万華鏡を観察したものです.
ワンドの中のガラスくずの流れとともに,映像はいろいろに変化しますが,映像の対称性はいつも同じです.
そのわけは,生じる映像にはいつも万華鏡の鏡室の対称性が反映されるからです.
それでは,この万華鏡の2枚鏡の交差角度は何度でしょうか?

 

 

 

 

 

 

 

 

  (2)正多面体の見える万華鏡
Q:
次の写真は万華鏡の映像です.正8面体(緑)と正6面体(青),正4面体(赤)が同時に見えています.
これは,3枚鏡の万華鏡ですが,どのような鏡の組合せでしょうか?

 

 

 

 

 

 

 

 

 

ーーーーーーーーーーーーーーーーー

  A 

(1)

 

 

 

 

 

 

 

(2)
正8面体(緑)と正6面体(青)の対称性は同じなので,空間中の非対称領域(3枚の鏡が囲む空間=鏡室)は同じですが,
正4面体(赤)の非対称領域はこの2倍の大きさです.
したって,これらの3つの正多面体が同時に生じているということは,
正4面体の非対称領域がこの万華鏡の鏡室であることが必要です.
万華鏡の3枚の鏡は,それぞれ,青,黄緑,赤紫で示した平面で,この3平面はO点で交わっています.
左図は正4面体の鏡室,右図は正8面体と正6面体の鏡室です.

 

 

 

 

 

この万華鏡は,正4面体の鏡室の場に,一番右の図に示すように物体(緑)を置いたり,
光の線分(赤,青)ができるようにしてあります.

0

美術・図工 小梁(OSA工房)のパズル★

この透明な立方体の箱(単位胞)が周期的に並ぶと,ページ65の空間の充填ができます.結晶はこのように単位胞が並んだ周期的構造です.
小梁(OSA工房)のパズルは,単位胞だけ取り出して充填させるパズルです.

   図1                   図2                  図3
図1は,透明な単位胞の底面中央に正8面体の上半分が見える様子です.この正8面体の残りの下半分は,見えませんが立方体の底面を突き抜けて存在します.
周期的な空間ですから,透明な箱(単位胞)の天井と床は同じもので,天井から箱内に向かって存在とイメージすると良いです.
単位胞内の底面の4隅には正8面体の1/8が見えます.この正8面体の残りの部分は,周期的な空間なので,図2のように立方体の壁を突き抜けて存在します.
図1のように並んだ正8面体の間隙には正4面体が4つ入ります(図3).

   図4                   図5                 図6

透明な単位胞の6つの面に,半割の正8面体を図4のように貼りつけました.単位胞内に6つの半割正8面体が入っています.単位胞の中心で,これら6つの半割正8面体の頂点が出会い,正8面体は稜を共有してつながります.
単位胞の中に含まれる正8面体の数は,半割正8面体6個と単位胞の8つの隅に1/8の正8面体がある(6×1/2+8×1/8)ので4個です.
図4をよく見ると,単位胞の内部にあるこの多面体(注)には8個の正4面体の間隙があることがわかります.従って,このような単位胞が繰り返される空間は,充填される正8面体と正4面体の個数比は1:2です.
注)半割の正8面体6つと,正4面体8つでできる多面体は,半正多面体{3,4,3,4}です.

0

会議・研修 物理から数学を作る

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.05] No.257
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆様いかがお過ごしでしょうか.ひな祭りも過ぎ春がもうすぐです.
ご存知の方も多いと思いますが,yahooブログが今年で閉鎖されることになりました.
私は,数学と社会の架け橋<数学月間>を,yahooブログに書き続けていますが,
現時点で延べ47,917人の訪問者があるし,お友達もできて,この縁を続けたいと
対策を考えています.数学月間の会は,https://sgk2005.org/にホームページがあります.
加えて,新しいサイトhttp://sgk2005.saloon.jp/ を準備中で,そこにはブログのコーナーも設け
yahooブログもここに集積するつもりです.
しかし,現在,要の役割をしているyahooブログの地位は捨てがたいので,これに代わる
新しいブログサイトも何処かに開設しお知らせしますので,皆様との縁が続きますよう願います.
そのようなわけで,要のyahooブログが今移動準備状態で,
メルマガで使う図はyahooブログからのリンクで入れていましたので
本号のメルマガ257号は,文章だけとなります.

■液体のジュースの缶と凍らせたジュースの缶があり,斜面を転がしたらどちらが速いでしょうか?
質量は同じで,直径の大きい缶と直径の小さい缶があり,斜面を転がしたらどちらが速いでしょうか?
このトッピックスは,中西達夫著の微積とラグランジアン(工学社)に載っています.
ネットを検索してみると,これらの話題は各所に見受けられます.
中西氏の本では,このような物理(運動)の実験から,問題を解くための微積などの
数学概念手法を説明します.その数学理論が生まれた場に立ち戻り数学を作ろうというのが
数学月間流の数学理解の仕方です.大変読みやすく興味深い本なのでお勧めします.

表題の物理の問題は,缶が斜面を転がる運動は,重心の移動と重心の周りの回転の
両者の重ね合わせと考えます.斜面の上端で静止状態の持つ位置エネルギーが
重心移動の運動エネルギーと重心周りの回転運動のエネルギーに変わります.
すなわち,回転運動のエネルギーに費やされる分だけ,
重心移動の運動エネルギー(1/2)mv^2は小さくなります.
回転させにくい程,回転に多くのエネルギーを使います.
缶の中が凍っている方が回転させにくいし,半径の大きい方が回転させにくいので,
液体の入った缶の方が速く転がり,直径の小さい缶の方が速く転がります.

0