タグ:幾何

家庭科・調理 角の3等分

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2017.11.07] No.192
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
与えられた任意の角の3等分は実在しますが,定規とコンパスだけでは,
これを作図できないということは多分ご存知でしょう.
以下は,ギリシャの幾何学者達が熱心に研究した不可能作図問題です:
(1)与えられた正立方体の2倍の体積の正立方体を作れ
(2)与えられた円と同じ面積の正方形を作れ
(3)任意に与えられた角を3等分せよ
もちろんこのような図形は実在しますが,作図手段を,「定規とコンパスだけを有限回使って」と制限して作図ができるか?という問題です.

■長さa, bの2つの線分が与えられたとき,直線定規とコンパスだけを用いて,
加法a+b,減法a-b,乗法a・b,除法a/b,開平√a
の作図が可能なことは,以下の図をご覧ください.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

定規とコンパスで作図できる長さ

これ以外の作図(例えば,立方根の作図)は定規とコンパスでは出来ません
(証明は難しいのでスキップ).

 (1)ではx3=2(a3)だから,2の立方根の作図が必要
 (2)では,x2=π(r2)だから,πという無理数の開平の作図が必要
 (3)では,x3-3x-a=0という角3等分の方程式の根であるxの作図が必要です.
[ただし,aは,与えられる角度Ω(cosΩ=a/2)により決まる]
例えば,Ω=90°(a=0)のときは,x=√3の作図になり,これは可能です.
しかし,一般角の場合,この3次式の解には3乗根が入ってきますので,作図は出来ません.
注)この角3等分の方程式の導出は以下の図をご覧ください.

 

 

 

 

 

 

 

 


任意の角度の3等分方程式

例として,Ω=60°(a=1)のときは,x3-3x-1=0となり,
p+q√r (p,q,rは有理数)の形の解を持たないので,
角の3等分の作図は(定規とコンパスでは)できません.

0

美術・図工 ロンドンで見た多面体

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.09.11] No.232
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
参考
ロンドンの記事
多面体の6角形の面

関西では台風大雨の被害,北海道では地震の被害と,重なりなした.
皆様いかがでしょうか.お見舞い申し上げます.
北海道の地震では,泊原発が停止していたのは不幸中の幸いでした.
もし稼働中だったら制御棒が挿入でき停止できたとしても,
燃料の冷却には非常用電源だけでは持ちません.福一の再現になるところでした.
今年は異常に暑い夏でした.私の家に来ていたシジュウカラさんたちは全く姿を現さなくなっていたのですが,9月8日になってまた戻ってきました.暑い夏はどこか山の方にでも避難していたのでしょう.無事で良かった.

今回はイギリス旅行で見たものの話です.
ロンドンに寄ったのは,7月16,17日の2日だけ.16日(月曜日)の昼にロンドン着.ブリティッシ・ライブラリーと大英博物館見学.あまり見学時間はありません.
館内も非常に暑い.その後トラファルガーまで2階建てバスに乗る.
16日はKings crossに泊まる.
マルクスは大英博物館の読書室で毎日過ごしたそうだ.記録が残っている.

地下鉄の通路のバイオリニスト.サウンドオブミュージックの演奏ですが,上手いので募金しました.上手いわけですここで演奏できるのはオーデションに合格した人だけだそうです.私も下手なバイオリンを奏くので,この方に関心をもちました.なぜここで演奏しているのか質問したかった.伴奏もなくただ一人.こんなところでバイオリンに出会うとは意外でした.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


17日(火曜日)は,V&A(Victoria & Albert)Museum(今日も非常に暑い日であるが,5階は天井ガラスでまるで温室).その後,自然史博物館見学.
東日本大震災のコーナーがありました.床が横揺れする地震の体験ができます.
地震を体験したことがあるかを問うアンケートの投票ボタンがありましたが,この地の人の7割が地震の体験がないようです.

■さて,街を歩いていて面白い建物を見つけました.
黄金比だらけのペンローズタイリングや面白い多面体のオブジェです.
この建物はよくわかりませんがロンドン大学と関係ありそうです.この多面体の形は,なかなか面白い.正5角形が12個と6角形(正ではない)が30個でできています.
正5角形が12面でできている「正12面体」の各面(正5角形)に厚みを持たせて,
側面が台形で囲まれた「厚みのある正5角形の面」で正12面体を作り,側面の台形は隣の面の台形とつないで平面上の6角形にします.なかなか美しく面白い多面体ですが,3つの6角形が出会う頂点があります.もし,6角形が正6角形なら3つ出会う頂点は平坦になってしまいますから,この図形の6角形は正6角形ではありません.

 

0

美術・図工 定規とコンパスで作図できる長さ

■円に点Bを通る2直線が交差しているときに,方冪の定理が成り立ちます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■2つの長さの加法,減法は簡単です.以下の図をご覧ください:

 

 

 

 

 

 

 

 

■結局,直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
加法,減法,乗法,除法,開平です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

 

 

 

 

 

 

 

 

 

 

円と同じ大きさの正方形の作図

0

グループ 角3等分の作図

サンディエゴの主婦マジョリー・ライスMarjorie Riceが,タイル張りの問題に出会ったのは,1975年のScientific Americanのマーチン・ガードナーのコラムだった.これは,古代ギリシア時代から数学者を魅了し続けてきた<<平面をタイル張りできる「タイル」の形(一つのタイルで平面を分割するテッセレーション)>>の問題です.
私も関心のある問題で,ガードナーのこのコラムを載せたサイエンスは昔読んで手元にあります.平面のタイル張りは,任意の3角形,任意の4角形タイルでできます.凸7角形以上のタイルでは不可能です.凸6角形の場合は,タイル張りできるタイルの形が3タイプあることを,ラインハルトが学位論文で証明しました(1918).難しいのは凸5角形の場合です.1975年時点のガードナーのコラムには,11タイプ(1967年にカーシュナーが発見した3タイプを含む)が掲載されています.この問題では,タイプ分けの条件が,とても難しい.連続変形によりどちらのタイプにも属するものがあるし,出来上がったパターンが全く違うように見えたりもするので,新しいタイプであるかどうかの判定はなかなか難しい.ライスもこの点にずいぶん苦労したに違いない.
1975年のガードナーのコラムの文章を引用すると,ーーーーーーーーー
カーシュナーの論文には,平面を埋める凸多角形が他にないことの証明はでてこない.その「最大の理由」は,編集者の「完全な証明は,かなり大きな本を必要とするだろう」という序文から読みとられる.---------
そして,実際にまだ新しいタイプがあったのだ.

■以下は,natalieの記事(Quantamagazine)による:
https://www.quantamagazine.org/marjorie-rices-secret-pentagons-20170711/
ライスが五角形タイリングに憑りつかれてから,家族はしばしば彼女が台所のカウンタートップの形をひそかにスケッチしているのを見ている.彼女の娘,キャシー・ライスは,「母は落書きしていると思った」と語った.
高等学校で1年しか数学を取らなかったライスは,誰も知らなかった五角形のテッセレーションパターンの新しい族を発見していたのです.ライスは,今年の7月2日94歳で亡くなりました.認知症のため,五角形タイリングの物語がついに完結したのを彼女が知ることはなかったが,ガードナーの提起から数十年が経過していた.
コンピュータ支援の新証明法で,フランスの数学者 Michaël Rao が,ライスが発見した4つを含む15の凸型五角形が存在することを証明した.

■フロリダ州生まれのマージョリ・ジック(Marjorie Jeuck),結婚後ライスは,ワンルームカントリースクールに入り,そこで2学年をスキップし,年長の子供たちと一緒に学びました.彼女は勉強好きでしたが,数学を学んだのは短期間だけです.貧困と文化的規範のため,大学に進学するなど思いもよらない時代でした.1945年,彼女は,敬虔なキリスト教徒のギルバート・ライスと結婚し,ギルバートが軍の病院で働くワシントンD.C.に移りました.後にサンディエゴに移住しますが,マージョリ・ライスは,幼少の息子と一緒に、その地で商業芸術家としてしばらく働きました.その子供は亡くなりましたが,他の5人の子供がおります.
ライスにとって,数学は楽しみでした.「聖書が重要のように,勉強も大切にした」,「他に勢力をつかい,時間を無駄にすることはなかった」とキャッシーは語っています.息子のダビデは,「彼女は黄金比とピラミッドに魅了され,膨大な図面と計算でそれらを研究していました」と述べています.
ライスは,子どもたちが学校に通っている間に自分も読めるようにと,息子の一人にScientific Americanの定期購読を許可しました.
デービッド・スズキの「物の本質」に関するインタビューで,彼女はタイル張りについてのガードナーのコラムを読んだとき,「誰も以前に見たことのないこれらの美しいものを,見つけられたら素敵と思った」と回想している.彼女はこのテーマに魅了され,どのタイプのものが他と違うのかを理解しようと努めた.数学的な背景がないので,独自の記法システムを開発し,数ヶ月で新しいタイプを発見したとも語っています.
発見して驚き喜んで,彼女は彼女の仕事をガードナーに送りました.ガードナーはそれをペンシルバニア州のモラヴィアン・カレッジのタイリング問題の専門家であるドリス・シャツシュナイダーに送ってくれました.一方,ライスは,自宅の誰にもこれの話をしませんでした.「私のお父さんは,お母さんが何をしているか,発見のことなども全く知らなかった.私たちの気を引くことが色々あるけれど,お父さんがパターンを見つけるのに何時間も費やす気持ちなど全く思いもよらない」
シャツシュナイダーSchattschneiderは,ライスの発見が正しいことを確認した.ライスのアプローチは,マイケル・ラオが新しいコンピュータ支援の証明に取り入れたのと同じもので,五角形の頂点がタイル張りの頂点で一緒になる可能性があるさまざまな方法を検討することでした.シャッシュナイダーは雑誌の記事で次のように語っています.目的に合う五角形の角と辺の条件を決定し,条件を満たす五角形を得ます.この方法で,ライスは最終的に4つの新しい凸形五角形とほぼ60種類のテッセレーションを発見しました.
ライスは恥ずかしいと講演を断ったが,シャッシュナイダーの招待で,彼女と夫は大学の数学会に出席し,彼女は聴衆に紹介された.彼女は1996年に "The Nature of Things"ドキュメンタリーでインタビューを受け,ワシントンにある数学協会のロビーのタイルフロアに彼女の五角形テッセレーションの1つが展示され,彼女はエッシャー風の絵画で彼女の五角形のパターンを記念した.

■この間,他のアマチュアも大きなタイル発見をしました.ソフトウェアエンジニアのRichard James IIIは,ガードナーのコラムを読んだ後で,1975年に新たなタイプの五角形を発見しました. 2010年,オーストラリアのジョーン・テイラーは,1990年にペンローズのタイル張りを見てタイル張りに魅了され,非周期のタイル張り(テッセレーション)する奇妙なマルチパートタイルを発見しました.
ライスの娘は「発見のためだけの発見だったが,認められて幸せだった」と語った.彼女は他の数学者が探していた何かを見つけることができたのだ.

Natalie Wolchover @nattyover
Senior writer for @QuantaMagazine covering physics and related things. I have a Klein bottle that contains the universe.

0

美術・図工 反転の利用ーパップスの定理★★

■反転の利用

反転の性質を使うと,パップスの定理の様な難しいものを簡単に証明できます.

このような図形はアルベロス
(靴屋のナイフ)といいます.
この中に面白い幾何学があります.

 

 

 

 

円弧αと円弧βに挟まれたア
ルベロスの領域に,互いに接す
るように円のチェーンω0, ω1,
ω2, … があるとき, 円ωnの
中心と直径ABとの距離は円ωn
の直径のn倍である.
(パップスの定理)

 

 

 

 

 

[以下の証明ができます]
円ω2の中心は,線分ABから円ω2の直径の2倍だけ離れていること.
① 点Aから円ω2へ接線を引く.両接点を通りAを中心とする円γは,円ω2
と直交します.(なぜなら,円の接線は接点での半径と直交するから)
② γを反転円にして,色々なものを反転してみましょう.
円ω2 は自分自身に.円α,β は,それぞれ 直線α’,β’に,
円ω1,ω0 は,それぞれ円ω1’,ω0’に,なります.
③ 円ω2,ω1’, ω0’の直径はすべて同じだから,パップスの定理が証明
された. (なぜなら,平行な直線α‘とβ’に挟まれているから)

0

美術・図工 円による反転の性質★★

■円による反転鏡映の性質
①反転円の円周上の点は,反転しても元の点と同じ位置.
②反転では,円は円に変換される(直線も半径∞の円の仲間)
下図に反転円(赤い円)による,反転鏡映の例を示します.
●図1・反転円Oと交差する円Cは,交差の2点を共有する円cに変換される.
●図2・反転円Oと直交する円Cは,自分の上に変換される.
円周に直交するような反転円で分断された円の2つの部分は,反転円によるそれ
ぞれの鏡像になる.
●図3・反転円Oの中心を通る円Aは,直線aに変換される.
特に,円Bが反転円Oと交差する場合は,交差する2点をよぎる直線bに変換される.
③反転円が直線なら,普通の鏡映像になります.
直線鏡の組み合わせで作られる映像は,良く知られた万華鏡です.
反転円を用いたアポロニウスの窓も拡張された万華鏡の映像と言えるでしょう.

0

美術・図工 エッシャーの「極限としての円」★★

■エッシャーのトリック(引用先:コクセター論文)

M.C.エッシャーの「極限としての円」Circle limit IIIを鑑賞しましょう(図左).
この円盤内は双曲幾何の世界(ポアンカレの円盤モデル)です.
この円盤内を旅する人は,円の縁(世界の果て)に近づくほど時間がかかる.
つまり,[世界の果てに到達するには無限の時間がかかる]ようになっています.
この世界で定義される直線(最短時間で移動できる経路)は,円盤世界の縁で直交する円弧です.
エッシャー作品(図(左))の円盤は,魚の流れを示す白い線で分割された双曲面の
[4,3,4,3,4,3]分割のように見えますが,実は図(中)に示すような,黒い線で分割した{8,3}正則分割です.
白い線は,双曲幾何の円盤世界の縁に80°で交差し,直線ではないのです.
図(中)の正8角形の黒い線がこの円盤世界の直線であることは,図(中)に書き込んだ赤い円弧
(いずれも円盤縁で直交する円弧)を見れば理解できるでしょう.
 

 

 

 

 

 

 

 

 

 

双曲平面の正8角形タイルは,双曲平面の直線(円盤の縁で直交する円弧)で囲まれています.
タイルの大きさは円盤の縁に行くほど小さく見えますが,円盤内は無限に広い双曲幾何平面なのですべて同じ大きさです.
1つのタイルの中には4匹の魚がおり中心に4回軸があります.
正8角形の頂点には3回軸があり,魚の白い流れは3回軸の場所に集まっています.
エッシャーは{8,3}分割に用いる直線をわざと隠し,白い流れが分割であるようなトリックを見せます.
もちろん,白い流れの円弧(直線ではない)に関して鏡映対称はありません.

0

美術・図工 双曲面万華鏡(コクセターの万華鏡)★

■直角3角形(7,3,2) によるコクセターの万華鏡

正7角形のタイルは,直角3角形(7,3,2)[内角の組(π/7,π/3,π/2)の3角形のこと]の14個に分割できる.
直角3角形(7,3,2)を鏡室とする万華鏡を,コクセター万華鏡と呼びます.


 

 

 

 

 

 

 

 

 

(1) {7,3}の正7角形タイル(赤)張り. (2)   (1)の双対である{3,7}の正3角形タイル(緑)張り.(3) 菱形タイル(青)張り.

 

 


3枚鏡(直線鏡2枚,円弧鏡1枚)のコクセター万華鏡により,
ポアンカレ円盤内の双曲平面は市松模様に塗られます.
生じるタイル張りは,正7角形のタイル張り,正3角形のタイル張り,菱形タイル張り,に見えます.

 

0

美術・図工 エッシャー作品の生まれるまで★

■エッシャー作品の生まれるまで

 

 

 

 

 

 

 

 


コクセター               エッシャー
直角3角形(6,4,2)            直線魚のモチーフ    「極限としての円I」
双曲面の{6,4}分割を細分                       Circle Limit I

コクセターとエッシャーはオランダで開催された1954年の国際数学者会議で出会いました.
1958年にコクセターはこの分割を掲載した論文*をエッシャーに送り,
これがエッシャーの「極限としての円」の作品群を生むことになります.

*By S.H.M.Coxeter
Crystal Symmetry and ItsGeneralizations (published in the Transactions of the RoyalSociety of Canada in 1957).

 続く⇒ 極限としての円Ⅲ

0

美術・図工 コクセターの万華鏡★

■メビウスの万華鏡とコクセターの万華鏡

■楕円幾何平面の正則タイル張り
球表面が球面正p多角形タイルで{p,q}のように張りつめられているとき,1つのタイルの中を2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡は“メビウスの万華鏡”と名付けます.このときの直角3角形(鏡室)の内角は,それぞれ π/p,π/q,π/2で,この直角3角形を(p,q,2)と表記します.

■双曲幾何平面の正則タイル張り
ポアンカレ円盤の双曲幾何平面でも,双曲正p多角形で{p,q}のように張りつめられているとき,1つのタイルを2p個の直角3角形に分割できます.この直角3角形を鏡室とする万華鏡は“コクセターの万華鏡”と名付けます.
双曲面の{6,4}正則分割の場合の直角3角形(6,4,2)(赤い3角形)を図(左)に,対応する“コクセターの万華鏡”の映像を図(右)に示します.

 

 

 

 

 

 

 

 

 

 



■双曲面{6,4}分割の場合の“コクセターの万華鏡”を作る
双極面{6,4}分割の映像を,3角形の万華鏡で作るには,双曲面直角3角形(6,4,2)を用います.この3角形の2辺は平面鏡,残りの1辺は円盤のフチに直交する円弧鏡よりなります.この円弧鏡は,数学的には反転円として定義できるのですが,現実の円柱鏡の反射には収差があるので,数学の定義のように鮮明な万華鏡映像を作るのは困難です.

 

 

 

 

 

0