ブログ倉庫

とっとりサイエンスワールドin鳥取

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.25] No.078
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■8月22日にとっとりサイエンスワールドim鳥取が開催されました.今年で9年目です.
市民の参加者は700人ほどで,万華鏡のワークショップ参加者は110人弱,
先生方および高校生2名のボランテアを得て無事実施できました.
全体で高校生ボランティア50名,特に今回は中学生のボランティア10名が加わりました.
写真などは 
http://blogs.yahoo.co.jp/tanidr/16933900.html をご覧ください.
このブログには,鳥取城址,久松山,仁風閣 の記事も掲載しました.

鳥取市歴史博物館,やまびこ館で,70年目の夏「昭和の戦争と鳥取」特別展がありました.
このテーマに関しての私の印象は,以下のブログにあります.どうぞお読みください.
http://blogs.yahoo.co.jp/tanidr/16935089.html

■さて,サイエンスワールドのワークショップの一つに
立体模型,小梁修(OSA工房)があります.
その中の問題の一つ「黄金三角形」の紹介をします.

正五角形の中を図のように分割して作った3種類の三角形
(これらはどれも2等辺三角形ですが何故でしょう)
の面積に関して,以下の関係があります.
(水色の三角形)+(黄緑の三角形)=(オレンジの三角形)
これを証明してください.図は以下にあります.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/82/16936782/img_0_m?1440421136

0

地球温暖化のウソ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.18] No.077
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆様,厳しい暑さの日が続きました.お元気でしょうか.私も関東で連日39℃を更新している日に
関東で一番熱い地域に黒服を着て行っていました.暑い暑い.

■地球温暖化のウソ
伊藤公紀(横国大教授)のIWJインタビューが以下のサイトにあります.
http://iwj.co.jp/wj/open/archives/256431
詳しくは,同氏らの「地球温暖化論のウソとワナ」KKベストセラーズ(2008)などをお読み下さい.
複雑系である気候決定の仕組みには,多くの要因が関与しており,現状の気候モデルではまだ説明できていない.
これらの要因には,人為的なものと自然的なものがあるが,人為的なもののうち温室効果ガスのCO2の増加
によるものだけが強調されている.
現実に起こっている現象は,グローバルな(地球全体としての)温暖化ではなく,
温暖化の地域と寒冷化の地域の両方が生じており,温室効果ガスCO2の増加で説明できるような単調なものではない.
種々の自然的な要因が気候の大勢を決めていることが近年の研究により明らかになってきた.
それは太陽風が影響を与えている北極海水温の振動や,海洋での熱移動などである.
海洋のコンベアベルトモデルも単純なものではなく,海洋での垂直熱移動は大きな関与をしているし,
大気の大循環のゆらぎもある.これらの影響が大きいことがわかってきたのだが,
現実を説明できるシミュレーションのできるモデリングにはほど遠いこともあり,
IPCCの報告書は,いまだに温室効果一辺倒に偏向したものになっている.

地球は閉じた系ではなく,エネルギーの出入りがある開放系なので,理論的に取り扱うのはとても難しい.
その上,都市化や大規模工事や砂漠化により気候が変わるのを実感し,
温室効果も現象としては真実(温室効果ガスはCO2だけではないH2Oもあるが)なので,
CO2排出削減ですべて解決するがごとく説得され,政策やビジネスに利用されている.
もちろん人為的な要因排除は我々の責任ですべきではある.
しかし,この問題は人間には手の下せない自然的な要因が大勢を決めているので,
CO2排出量削減をしても解決はしない.地球温暖化を原発推進の免罪符にするのは誤りである.
原発はCO2を出さないので温室効果を低減できるという論理は,
原発で生じる熱の大半が冷却水を介して海水に捨てられ海水を直接熱汚染していることを見れば
破綻していることがわかる.

■参考ー温室効果について
私は地学を教えていた(37年前のこと)ことがあるのだが,その頃は,温室効果と石炭消費量と温暖化の話をしていた.
地球の兄弟星の金星(400℃を越える)は,限度を超えたCO2の増加と気温上昇の正のフィードバックが暴走した結果
H2Oがなくなり,現在の金星大気の98%はCO2である.H2Oがなくなる前の金星の原始大気のCO2は多くて一割と推定されている.
現在の地球の大気のCO2濃度はずっと小さいが,ハワイのマウナロア山腹で,継続観測のデータがあり,
320ppm(1960年)から370ppm(2000年)と増加しているのは事実だ.
しかし,CO2増加による気温の上昇は,せいぜい2℃程度と計算される.
地球外から到来する可視光が地表を温め,地表が宇宙に放射される赤外線を温室効果ガスが吸収するので
地球が保温される.仕組みがシンプルで見積もり易いのだが,これだけで現実を説明しようとするのは無理がある.

■地球温暖化のデータ解析は信頼できるか?
・採用したデータ自体の信頼性
  経年のデータの測定条件が一定でない.恣意的なデータ採用が行なわれた.
・統計学の正しい運用
  主成分分析に誤りがあったらしい.
・シミュレーションの信頼度
  シミュレーションはパラメータが3つもあれば,どのような結果にも合わせられるので,
  モデリングの理論的根拠が大切である.
・相関関係よりの因果関係を問う

0

とっとりサイエンスワールド2015

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.11] No.076
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
とっとりサイエンスワールド2015が始まりました.
鳥取県と鳥取県数学教育会が主催です.8月2日が米子,コンベンションセンター,
8月9日が倉吉,未来中心,8月22日が鳥取,とりぎん文化会館で実施の予定です.
とっとりサイエンスワールドの開催時間は,各会場とも10:00~16:00です.
小さい子から大人まで,新しい人から顔なじみまで多くの市民の方々に定着した
楽しいイベントになっています.とっとりサイエンスワールドは今年で9年目です.
お近くの方,今年もお寄りください.
今年の万華鏡は次の3つを用意しています.

http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/16895829/img_0_m?1439204340

■米子
8月2日の米子,コンベンションセンターでは,全体で815人の入場者で盛況でした.
スタッフは,小・中・高の先生方および高校生ボランティアです.
万華鏡は,24人のクラスを5回実施し120人が自分の万華鏡を作りました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/16895829/img_1_m?1439204340
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/29/16895829/img_2_m?1439204340

■倉吉
8月9日のとっとりサイエンスワールドin倉吉は未来中心で実施され,
小,中,高の先生方90人+高校生ボランティア40人のスタッフが働き,1024人の市民参加者がありました.
万華鏡のワークショップは110人分用意し,先生や高校生ボランティアの助けを得て
平均22人のクラスを5回順調にこなせました.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/11/16907511/img_0_m?1439205601
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/11/16907511/img_1_m?1439205601

■鳥取
次の開催地は,8月22日,鳥取のとりぎん文化会館です.
こちらでは,万華鏡は160人分用意する予定です.

--------
万華鏡は合わせ鏡の仕組みから話を始めます.
平行な合わせ鏡により1つの物体が一直線上に無限に並んで見えます.
終わりというものがない.最後の映像があったとしてもこれが鏡に映れば
その先の映像が生まれてしまうからです.
次に,2枚の合わせ鏡が平行でなく角度θで傾いている場合を考えましょう.
生じる映像は一直線上でなく円周上に並びます.
そして,円周の向こう側ではきちんと重なって欲しい.
この条件から,360/θ=偶数で割り切れる という万華鏡の条件が生まれます.
今年の万華鏡は,鏡の交差角が作る3角形の1つの角度に 260/θ=偶数 という条件が
わざと成り立たなくしたものです.

0

トランス脂肪酸の話

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.08.04] No.075
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
今回は,数学らしくないと思うかもしれません.立体異性体の話です.
これは,右手と左手のように互いに鏡像となる分子の立体構造が関係しています.
この記事は,日刊ベリタに掲載(7/30)したものです.
暑さ厳しい夏です.健康に悪い油やマーガリンの取り過ぎに注意しましょう.

米食品医薬品局(FDA)は16日,食用油などに含まれ,肥満や心臓病との関連が指摘される
トランス脂肪酸を,2018年6月までに食品添加物から全廃すると発表しました.
日本でもトランス脂肪酸の低減をうたっている企業が出始めました.
トランス脂肪酸は,マーガリンやクッキーを焼くのに使うショートニングオイルなどに
含まれているそうです.トランス脂肪酸は悪玉コレステロールを増やすと言われています.
また,アトピーなどにも悪影響がありそうです.

脂肪酸のシス型とトランス型の分子構造について簡単にまとめておきます.
以下のサイトが参考になります:
http://www.maff.go.jp/j/syouan/seisaku/trans_fat/t_wakaru/
https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B9%E8%84%82%E8%82%AA%E9%85%B8

脂肪酸は,炭素原子が鎖状に並び,最後の炭素に=OとーOHが付いた分子です.
つまり,  CーCーCー・・・・ーCOOH    =は二重結合,-は一重結合  
Hを省略せずに詳細に書くと
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/08/16882908/img_0_m?1438241054

この例は,背骨となっている炭素原子の鎖は,すべて一重結合でできているので,
すべての結合手がふさがっており飽和脂肪酸と呼ばれます.
不飽和脂肪酸と言うのは,炭素原子の鎖の何ヶ所かに二重結合のあるものです.
二重結合でつながれた両側の炭素は回転できませんから(裏返しにできない)
シス型(左図)とトランス型(右図)の構造の区別ができます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/08/16882908/img_1_m?1438241054

天然にある不飽和脂肪酸は,ほとんどシス型です(わずかな例外はあります).
不飽和脂肪酸は酸化などで劣化しやすいし,大豆等の植物油の不飽和脂肪酸は常温で液体なので,
固体状にするため水素Hを付加してを飽和脂肪酸に変えることが工場で行われます.
このときトランス型の不飽和脂肪酸も生じ混ざるそうです.

(注)よく知られた不飽和脂肪酸の例
炭素の数18個で二重結合1個はオレイン酸,二重結合2個はリノール酸,
炭素の数22個で二重結合6個はドコサヘキサエン酸(DHA).

■なぜシス型脂肪酸は安全な栄養で,トランス型脂肪酸は害があるのか
シス型,トランス型のような立体構造に差異があるものを“立体異性体”といいます.
炭素原子からは4本の結合手(二重結合ならそのうちの2つを使う)が出ていて,
それぞれの手に結合する原子が入れ替わると立体的に異なる構造になります.
右手と左手のように互いに鏡像である異性体も,この立体異性体の仲間です.例えば,
味の素はグルタミン酸ですが,立体異性体の右型と左型があり,
左型には旨みがあるが右型にはありません.これはおそらく,
人間のアミノ酸が左型であることに関係ありそうです.
不飽和脂肪酸の場合も,天然にあるものがほとんどシス型であることが
シス型が相性の良い理由と思われます.
サリドマイドでは,立体異性体の一方が副作用のない薬であるのに,他方には催奇性があった.
まるでジギルとハイドだが,このような大きな性質の違いがある理由はわからない.

0

数学月間懇話会(第11回)の様子

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.28] No.074
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
暑い日が続きます.皆様いかがお過ごしでしょうか.
7月22日の数学月間懇話会(第11回)は無事に終了しました.参加の皆様ありがとうございました.
今回のゲスト講演者,細矢治夫先生は瑞宝中綬章を春に叙勲されました.
多角形百科(丸善)細矢・宮崎,および,七金三パズルの販売もありました.
今年も暑かったです.高校生5人を含む30人を超す参加があり熱心に質疑もなされました.
参加者の過半数が懇親会にも参加されました.
教室付近の構内は自動販売機がないし,飲み水に不便し私も熱中症気味.
でも今年は良い方です.一昨年の米沢興譲館の高校生がバスで団体参加したときのことが思い出されます.
バスから降りて炎天下グラウンドを歩かされて気の毒でした.
彼らはトイレも給水もそこそこ休む間もなく参加したのでした.
暑い最中に毎年こんな状況では,水くらい飲めるように改善したいものです.皆様ご要望などお寄せ下さい.
数学月間(7/22~8/22)はまだまだ続きます.
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/558900/79/16871179/img_0_m?1437962932
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/558900/79/16871179/img_1_m?1437962932
---------------------

私の講演内容 “繰り返し模様の観賞法” は,blog別項に掲載しています.
(そちらをご覧ください)http://blogs.yahoo.co.jp/tanidr/16859852.html
繰り返し模様の対称性は有限図形の対称性にくらべて,なじみのない人が多いようです.
教科書で取り上げているのは有限図形の話だけですからね.
しかし,周期的空間は,結晶などが実在する重要な世界です.
私は「空間を均一にデジタル化する」ということからスタートする教程を
構想しています.人間の視細胞を始め自然界のほとんどのものがデジタル空間です.
勉強会など機会があれば,繰り返し模様の数学の愛好者を増やしたいものです.

数学らしくいうと,繰り返し模様と有限図形との関係は
「並進群を核(法)として,空間群は点群に準同型」という事になります.
ここで,繰り返しの規則が「並進群」,繰り返し模様を表すのが「空間群」,
有限図形を表すのが「点群」です.「法として」というのは時計を想像してください.
12を法として無限に続く時間を表示しています.

準同型という概念の心は,集合のもつ特徴を見つける(整理する)のに,
集合の要素の持つある特徴を同じと見做せれば(その小異に目をつぶれば),
別の特徴が顕著に見えてくるという事.
日常生活の色々な場面でこの考え方が出てきます.
「小異を捨てて大同に就く」というは,この考え方に関係がありそうです.
つまり,「小異を同値と見做すなら,別の違いが見えてくる」
そして,「別の違いがない場合は,大同に就ける」という事でしょう.

0

十年目の数学月間記念号

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.21] No.073
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
数学月間(=数学と社会の架け橋)は今年で十年目になりました.
7月22日~8月22日を数学月間とすることは,2005年に日本数学協会が提唱しました.
この期間は,数学の土台となる2つの重要な定数
(円周率)π=3.14・・・≒22/7と(自然対数の底)e=2.71・・・・≒22/8に因みます.
数学月間の会SGKは,月間初日の7月22日に「数学月間懇話会」を開催しています.

(注)今年の数学月間懇話会の案内は文末にあります.

我々は,この期間に各地で数学を楽しむイベントが盛んになるよう応援しています.
皆様の周りに数学イベントの情報などありましたらお知らせください.
SGK通信に掲載し連携イベントとして広報いたします.

漢字が読めないのは恥だが,数学なんて知らなくても構わないと思っていませんか.
数学は浮世離れしたものではありません.我々の社会は至る所で数学に支えられています.
数学月間は,“社会が数学を知るとともに,逆に数学が社会のニーズを知る”機会でもあります.
数学月間懇話会では,色々な分野で活躍する数学を鑑賞したり,
数学が生まれた現場に立ち戻りその生い立ちを観賞します.
完成された抽象数学は巨大山脈のようで,一般人には近寄りがたく感じるのものですが,
このように数学を見ることで共感できるのではないでしょうか.

我々の数学月間の手本となった米国の数学月間(スタート時は週間)の原点
“レーガン宣言(1986年)”を,以下に掲載します.今読んでも味わい深く格調高いものです.
ーーーーーーーーーーーーーーー
アメリカ合衆国大統領による宣言5461----
 「国家的数学認識週間」1986年4月17日

宣言(National Mathematics Awareness Week)

 およそ5000年前、エジプトやメソポタミアで始まった数学的英知は、科学・通商・芸術発展の重要な要素である。
ピタゴラスの定理からゲオルグ・カントールの集合論に至る迄、目覚ましい進歩を遂げ、
さらに、コンピュータ時代到来で、我々の発展するハイテク社会にとって、数学的知識と理論は、益々本質的になった。
 社会と経済の進歩にとって、数学が益々重要であるにも拘わらず、数学に関する学課が、
米国教育システムのすべての段階で低下する傾向にある。
しかし、依然として、数学の応用が、医薬、コンビュータ・サイエンス、宇宙探究、ハイテク商業、
ビジネス、防衛や行政などの様々な分野で不可欠である。
数学の研究と応用を奨励するために、すべてのアメリカ人が、日常生活において、
この科学の基礎分野の重要性を想起する事が肝要である。
 上院の共同決議261で、国会が1986年4月14日から4月20日の週を、国家的な数学認識週間として制定し、
この行事に注目する宣言を出す事を大統領に要請した。
 今日、アメリカ大統領、私、ロナルド・レーガンは、1986年4月14日から4月20日の週を
国家的数学認識週間とする事を、ここに宣言する。私は、すべてのアメリカ人に対して、
合衆国における数学と数学的教育の重要性を実証する適切な行事や活動に参加する事を勧告する。
その証拠として、アメリカ合衆国の独立から210年の西暦1986年の4月17日、ここに署名する。
ロナルド・レーガン(Ronald Reagan)

0

新国立競技場のキールアーチ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.14] No.072
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ここでは,新国立競技場のキールアーチの不都合な力学についてのみ論評します.
その莫大な予算と環境破壊が不評な新国立競技場問題では,
発注前に設計図面の確定があったか,合意形成に必要な情報公開があったのか,
何処の誰が決定責任者なのか,全く見えないプロセスが最大の問題点ではあります.
工期がないと言ってはなし崩しに進めて行くやり口には,もう散々です.
以下の為末氏のブログの意見は全くの正論だと思います.
http://tamesue.jp/20150710/
-----------------

キール(竜骨)とは,船の船首から船底を通って船尾に至る鉄骨の背骨のことです.
新国立競技場の設計(ザハ案)には,巨大なキールアーチが2本使われています.
1本500億円かかると言われています.http://togetter.com/li/841805
この構造の問題点は,以下で評論されています.
http://ameblo.jp/mori-arch-econo/entry-11873045351.html

アーチの形は, http://blogs.yahoo.co.jp/tanidr/16586546.html で述べたことがあります.
アーチの曲線は,上下ひっくり返すと懸垂曲線と同じ形です.
中心から曲線に沿って測った距離をs,その点の曲線の接線の傾きをθとすると,
tanθ/s=一定 の関係があることをそこで説明しました.
アーチの形は,曲線内部の全ての位置で圧縮応力でつりあっているのが特徴で,
大きな荷重を支えることができます.
しかし,あまりにも曲率の大きい平べったいアーチになるとポッキリ折れそうな気がしませんか.
圧縮応力よりもせん断応力の方が圧倒的に優勢になってしまいますからね.

アーチは最終的に,両側の接地点にすべての荷重がかかります.
370mのキールアーチ1本の重量は3万トンと言われていますので,
両端の各接地点はW=1.5万トンの重量に耐えねばなりません.
アーチの頂上の高さをどれくらいに抑えるかによりますが,
ザハ案のデザインのように低く抑えたい(大きな曲率にしたいなら)接地点の傾きθ0が小さくなりますから,
接地点での水平分力W・sinθ0は大きくなります(θ0=30°なら,1.3万トン).
アーチ橋の所で述べたように,アーチ橋の根元には大きな水平抗力が必要で,
両側が山に挟まれた峡谷などは,アーチ橋に適した立地条件です.しかし,
新国立競技場の場合は平地なので,アーチの根元の外側からガッチリ固定したい所ですが,
地下に地下鉄大江戸線があるのでできそうにありません.
そこでアーチ端の内側同志を鋼材で引っ張る(アーチを弓とすると弦のように引っ張る)ことにする.
この鋼材は両側から引っ張られますから,2.6万トン重ほどの大きな張力になります.
軟な鋼材では耐えられませんね.
ちなみに,コンクリートは圧縮には強いが引っ張りには弱い.
鉄筋コンクリートの鉄筋はコンクリートの引っ張り強度をカバーするために入れるのです.
アーチは圧縮力に強いコンクリートが使えますが,キールアーチでは使えません.
いろいろ補助手段を工夫するでしょうが,合理的な設計ではないので工夫のし甲斐がないでしょう.

0

地震(べき乗則)と被害(原発事故)

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.07.07] No.071
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
この所,雨の日が続いています.皆様如何お過ごしでしょうか.
7月22日は数学月間懇話会を開催しま.どうぞお出かけください.

昨年(2014年7月22日)の数学月間懇話会の話題の一つに,
中西達夫さんの「スパゲッティを巡る旅」がありました.
これはスパゲッティを適当に砕くと,破片の長さ分布がどのようなものになるかという興味ある実験でした.
興味おありの方は,「数学文化」第21号をご覧ください.このとき観察される「べき乗則」は,
社会の関心事の一つである「地震」にも関係があります.

この地震のテーマは,メルマガNo.031('14/09/30発行)で,
複雑系(原発)の事故雪崩のテーマは,メルマガNo.006('14/05/15発行)で,
取り上げたことがあります.

地震のマグニチュードMは,エネルギーの対数です.マグニチュードを決めるのにリヒターが発案した当初の定義は
便宜的なものでしたが,現在ではもっと理屈に合ったモーメント・マグニチュードが採用されています.
(注)震度というのはその地の揺れ(加速度[ガル])の程度の段階です.
地震で解放されたエネルギーは,生じた断層面の面積×平均変位×地層の剛性の積です
(大雑把にいえば生じた断層の長さに比例します).
生じた断層の長さが長い方が解放されたエネルギーは大きいし,
地層の剛性が大きいほど大きな歪エネルギーが蓄えられます.
これらを踏まえ,起こりうる地震の最大エネルギーを見積もるとM9.5程度と考えられています
(1960年のチリ地震ではM9.5が観測されている).

地震のマグニチュードMと発生頻度(回/年)nの間にn=10^{a-bM}の関係があるのを,
グーテンベルクとリヒターが発見しました.a, bはその地域の地層の剛性などを表す定数で,
b≒1ですので,地震のマグニチュードが1つ大きくなるごとに,地震の回数は1/10に減ります.
ゆえに,これを「べき乗則」とも言います.

地震では多く発生するマグニチュードというものがありません(正規分布ではない).
大きな地震ほど少なくなりますが,M9あたりも起こり得る.そんな巨大な地震に見舞われたなら壊滅的です.
地震被害の低減対策は,被害のコスト(Mの関数)×発生確率(Mの関数)を小さく抑えることです.
従って,頻度は小さいけれど致命的な被害を惹起する巨大地震に対して,
被害が最小となるように備える必要があります.広域の汚染と何十年では済まない年月を要する
原発事故の被害コストは致命的です.原発の再稼働は止めましょう.

クリーン・ルームのチリのサイズ分布も「べき乗則」だと言われています.
もし正規分布のように頻度の高いサイズがあるなら,
そのサイズのチリの発生に特化した対策ができるのですが,「べき乗則」では特別な対策は困難です.
でもこの場合は,大きなサイズのチリが桁外れに大きな被害コストを与えると言う訳でもありません.

中西氏の実験したスパゲッティやクラッカーのほかに,分布関数を求める実験には色々あります.
凍ったジャガイモを投げて砕き,破片のサイズ分布を調べた人(南デンマーク大,1993年)などもいます.
ここでも「べき乗則」が確認されました.

0

統計数理研究所オープンハウスの話題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.30] No.070
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
6月も末になりました.今年は梅雨らしい雨がありません.
皆様の方は如何でしょうか.いよいよ数学月間(7/22~8/22)
の月になりますね.
----------------
6月19日に統計数理研究所のオープンハウスがありました.
(統計数理研究所は立川にあります)
統計数理研究所には,
モデリング研究系,データ科学研究系,数理・推論研究系
の3つの系があり,各系にはそれぞれ3つのグループがあります.
オープンハウスでは,100件に近いポスター展示
(大学院生のポスター発表も27件含まれる)がありました.
午後は,「統計よろず相談室」や講演などがありこれも人気でした.
ポスターで興味深かったテーマを一つだけ紹介します.
--------------------------------------
電波干渉計の新たなイメージング法について,池田思朗准教授ほか

電波望遠鏡(アンテナ)を地球規模で複数個配置し,
各アンテナで受信する信号の相関処理をして,一つの仮想的な
巨大望遠鏡としたものを電波干渉計と呼ぶそうだ.
受光電波はcmオーダーのミリ波らしい.

(注)
* ALMA望遠鏡(チリ共和国北部にあるアタカマ砂漠の標高約5000メートル
の高原に建設される)は,66台以上の電波望遠鏡を並べ,
これらの受信データを組み合わせて一つの巨大な仮想望遠鏡とする.

* 赤外線に近い電波を「サブミリ波」波長=1~0.1mm,周波数=300GHz~3THz
少し波長が長い電波を「ミリ波」波長=10~1mm,周波数=30GHz~300GHz

ブラック・ホールからは光が来ないと思っていたが,
ブラック・ホールの口で生じるプラズマから光(電波)が来るそうだ.
この光を受光して,光源の像を得ると円環状で,
ブラック・ホールの穴の形が見えるらしい.

これは宇宙オーダーの話だが,物質からのX線散乱を観測して
物質の原子的構造(nmオーダー)を見る話と非常に似ている.
そこで,私になじみのある結晶の例で理解を試みようと思う.
結晶(物体)ρ(r)からでる散乱X線F(R)は,Fourier変換の関係にあり
F(R)=W・ρ(r), ここで,WはFourier変換の演算行列.
もし,F(R)がわかれば,逆変換ρ(r)=W^-1・F(R)で,
ρ(r)が求められる.しかし,実際に観測できるのは,
複素数F(R)の大きさ|F(R)|のみで,位相はわからない.
だから,位相の推定法が,結晶学の主要な課題になっている.
位相推定には,逆空間をNyquist周波数以上でサンプリングする
オーバーサンプリングの測定も最近やられるようになった.

(注)
* 我々のいる観測空間は,物体ρ(r)のFourier変換スペクトルF(R)
の観測をするので,逆空間(R-空間)と呼ばれる.
これに対し,物体のある空間を実空間(r-空間)と呼ぶ.

宇宙からの電波の受光では,位相は計測できるようだ.
問題は,受光アンテナを乗せている地球が,
観測空間(逆空間)内の限られた軌道上を動く(自転や公転)だけなので,
限られた逆空間のデータしか観測できないところにあるらしい.

位相はわかるにしても,圧倒的に狭い逆空間内の観測データだけから,
逆Fourier変換で光源の形を求める課題である.
つまり,F(R)を観測できずに,圧倒的にゼロの多い2次元行列Fo(R)
しか得られず,この2次元行列を逆Fourier変換し,
光源のイメージ(2次元画像)を得なければならない.
おそらく,観測スペクトルFo(R)とモデルイメージのFourier変換像W・ρ(r)
との差||Fo(R)-W・ρ(r)||が最小となるように最小2乗法でρ(r)を求める
と同時に,観測できなかった範囲の逆空間の推定値も決まるのだろう.
もしかして,このプロセスで,光源の中心対称性などの光源の形に関する
何らかの束縛条件を仮定して推定を進めるのかもしれない?

(注意)この解説は私の推測を補っています.
発表内容の詳細を全部把握したわけでないので
不正確な部分があることをお断りしておきます.

0

数学月間だより

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.23] No.069
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆数学と諸科学・産業技術との連携
日本学術会議シンポジウム,“礎(いしずえ)の学問:数学
-数学研究と諸科学・産業技術との連携”-が,日本数学会,
日本学術会議数学委員会の主催で,2006.05.17に開催された.
このシンポジウムの狙いは,先端数学研究と異分野
(社会,医学,諸科学,産業など)との連携研究の拠点づくりにある.
その後数回の成果報告会がもたれ,直近では
“数学は世界を変えられるか?「忘れられた科学:数学」から10年
-数学イノベーションの現状と未来”が,2015.04.16に開催された.
異分野の課題の中に,数学が適用できるニーズや,
新しい数学が生れるシーズを発見できるかも知れないのだが,
数学者側から積極的に異分野の課題を理解し,課題の数学的命題化に
力を貸すことが必要だとの意見が出ている.
現実の課題から数学の命題を抽出する所が一番難しいのであり,
数学者はこの段階にも積極的に関与すべきである.

◆数学月間テーマから見る数理科学のトレンド
数学月間は,数学の価値を社会が知ると同時に,
社会からの要請を数学側が知る機会でもある.
国内外の数学月間テーマのトレンドを見ると,ビッグデータや統計学,
複雑系や非線形,モデリングやシミュレーションの話題が増加した.
これらはすべてコンピュータを駆使した数値計算によって
可能になった分野である.具体例を2つ紹介する:
(1)エネルギーの保存される系は,オイラー-ラグランジュ方程式を
立てることができるのだが,一般にはこれは解けない.
物理演習で学んだものは,線形近似で解けるようにしたものだった.
そして,解けない一般の場合にも解の挙動は似たものだろうと想像していた.
しかし,これがだいぶ違う.1900年ポアンカレは,
独立な因果列からなる可積分の方程式はわずかで,
大部分の方程式は非可積分(干渉し合う因果列)であると警鐘をならした.
明日の一つの出来事には,今日の全ての出来事が反映される
-遠方の地で過去に起きた蝶の羽ばたきが,
この地の明日の大風を引き起こす要因になり得る「バタフライ・エフェクト」
の世界である.初期パラメータのわずかな違いで分岐が起きカオスが生じる.
これらは方程式を積分して関数で書き表すことは不可能だが,
コンピュータを用いた数値計算で現象の追跡が可能である.
モデリングとシミュレーションにより現実現象を理解する
「現象数理科学」がさまざまな分野で盛んである.

(2)アモルファス(ガラス)物質の記述にトポロジーが登場した.
結晶は周期的な構造であるので,並進群を核とする準同型写像で
無限に広がる空間を単位胞の中に還元でき記述は簡単である.
アモルファス材料は均一ではあるが周期性はないので
多数の原子を全部記述せねばならず困難である.
アモルファス材料の記述は,古くは動径分布関数による統計的記述であった.
しかし,この記述では,特性の大きく異なるアモルファス構造でも,
同様な動径分布関数を与えてしまう.
そこで,アモルファス構造を特徴づけるいくつかのトポロジー量の定義が
導入された.ガラス構造のネットワーク中に,何員環がどれだけ存在するとか,
ベッチ数や連結数などの特性量,さらにパーシステントホモロジー群
の計算がなされている,これにより詳細なアモルファス構造の記述ができる.
これらのトポロジー量は,大きな原子数のアモルファス構造モデルで,
シミュレーションにより決定された全原子の座標値のビッグデータを
土台にして導出される.

◆市民のための数学月間
完成された抽象的な数学は,取りつき難くそびえる巨大な山脈だ.
身の回りの課題にどのような数学概念が使われているかを具体的に知ると,
数学学習へのモチベーションが高まる.
欧米は日本に比べこのような啓蒙活動がとても充実している.
多くの数学者が,他の領域の科学者と共同研究をしているのは
日本も同様であるが.英国では数学研究の大学生を学校に派遣し,
研究内容を説明させる(大使計画).これは日本もぜひ見習ってほしい活動だ.
当協会の「数学月間」活動のような一般への啓蒙活動は,
成果が不明確なため国家的なプロジェクトから放置される傾向にある.
そして,危機意識のある数学愛好者によってボランテア・ベースの活動が
行われているのが現状である.

0

今年の数学月間お知らせ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.16] No.068
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
◆お知らせ
数学月間懇話会(第11回)
主催●日本数学協会,数学月間の会(SGK)
日時●7月22日,13:50-17:20
----
1.十年目の「数学月間」
 片瀬豊,高窪正明(SGK)
2.「サッカーボールの対称性を解くTopological Symmetry」
 細矢治夫(お茶の水女子大名誉教授)
3.繰り返し模様の観賞法
 谷克彦(SGK)
4.テーラー展開の話
 鈴木啓一(SGK)
ーーーー
会場●東京大学(駒場)数理科学研究科棟002号室
最寄り駅●京王井の頭線「駒場東大前」
参加費●無料
問合せ先●数学月間の会(SGK)
sgktani@gmail.com,谷克彦(SGK世話人)
直接会場においでください(開場13:30)

◆数学月間だより1
日本数学協会は,2005年に,7月22日--8月22日を数学月間と定めました.この期間は,数学の基礎定数 π(22/7=3.142..) とe(22/8=2.7..)に因みます.この期間に,数学への共感を高める活動が各地で盛んになるよう我々は応援しています.
数学が色々な分野で社会を支えていることを市民が知ることは,数学への共感の呼び起こしに直結します.逆に,社会が必要としている数学を数学者が知る--言い換えれば,異分野の課題の中に数学が適用できるニーズや新しい数学が生まれるシーズを見出す--ことも重要であります.

先ず隗より始めよで,SGKは毎年7月22日に数学月間懇話会を開催しています.
これまでのテーマを見て見ましょう.
(資料1)**********
◆数学月間懇話会10年の記録
第1回(2006.07.22)会場:シーボニア
数学月間のπとeの連分数展開,公開鍵暗号 山崎圭二郎
数学と社会                真島秀行
ゲストスピーチ             鈴木裕道
第2回(2006.08.06)会場:議員会館
財政再建と数学:TQC手法        (日科技連)
第3回(2007.07.22)会場:ルベソンヴェール
シミュレーション            谷口健英
第4回(2008.07.22)
数学月間  片瀬豊
ある数学者たちの物語   上野正
数学と基礎科学   谷克彦
秘宝-数学的オブジェの照明    岡本和夫,河野俊丈
第5回(2009.07.22)
宇宙のかたち            河野俊丈    
造血幹細胞移植データベースと統計   田渕健
生体情報のゆらぎとフラクタル性     河野貴美子
MRIの数学的原理 真島秀行
第6回(2010.07.22)
手と目で観賞,数学曲面と多面体     手嶋吉法
教育数学の試み             岡本和夫
第7回(2011.07.22)
サイバー世界のモデリング        北川源四郎
量子コンピューティングの考え方     荒井隆
米国MAM複雑系と日本の原発事故     谷克彦
第8回(2012.07.22)
物理化学の探検ー化学の中の数学の世界  細矢治夫
じゃんけんの必勝法を論じて統計的思考に 石黒真木夫
第9回(2013.07.22)
考える楽しみわかる喜び         水谷一
最小二乗問題の新解法と逆問題への応用  速水謙
数学祭り                谷克彦
第10回(2014.07.22)
人口の集合関数としての「民力指数」   松原望
スパゲッティを巡る旅          中西達夫
第11回(2015.07.22)
十年目の数学月間                  片瀬豊,高窪正明
サッカーボールの対称性を解くTopological Symmetry 細矢治夫
繰り返し模様の観賞法          谷克彦
テーラー展開の話                  鈴木啓一
注)第4回以降の会場は,数理科学研究科棟・東大駒場キャンバス

次号に続く

0

数楽しよう--鼎談

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.09] No.067
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
『数学 理性の音楽』,東京大学出版会(2015.4)刊行記念イベントが,
東京大学伊藤国際学術研究センター地下1階 ギャラリーにて開催された.
(6月8日,19:00-21:00)
同書の著者,東大名誉教授(岡本和夫・薩摩順吉・桂利行の三氏)による鼎談.

この書籍の副題は,自然と社会を貫く数学で,
まさに,数学月間のコンセプトが語られております.
ぜひ皆様が一読されることに期待し,ここでは書籍の内容には言及しません.
その代り,鼎談の内容を速報します(今夜,参加し帰宅したばかりでホットな情報です).
----------
鼎談は,岡本氏の「数学の3つの側面」
ー道具としての数学.言葉としての数学,対象としての数学--の話から始まりました.
著者の3氏は,奇しくも歴代の東京大学大学院,数理科学研究科長です.
数学の大学院が理学部から抜けて,駒場に大学院数理科学研究科が創設されたのが
1992年のことで初代の科長が岡本氏,次いで薩摩氏,桂氏でした.
本郷キャンバスの理学部から大学院だけ抜けて,駒場キャンバスに
大学院数理科学研究科が設立できたのは,教養学部の数学の歴史があり,
基礎科学科もあったので,環境が整っていたことがあったようです.

20世紀の数学は,抽象化・純化に進んだわけですが,これは数学を学び難くしています.
どうも,学生・生徒たちは数学を人間が作ったという気がしないそうです.
完成された体系がそこにある.どうして生まれたかなど考える余裕もないようです.
完成された数学はそびえたつ山脈のようでとりつきがたい.
数学月間でも数学が生まれる所から親しむことを薦めています.

数学は役に立つのかというのは愚問です.
すぐ役に立っこともあるし,何十年もの後で役に立っものもあります.
岡本氏の研究したパンルヴェ方程式はソリトンの研究に使われるし,
暗号(公開鍵.楕円曲線),デジタル信号の誤り訂正,などの例が出ました.
1900年に,ヒルベルトは23の問題を出し,数学は抽象化の方向に進みだします.
同年,ポアンカレも人力で計算できるところまで行き着き,非可積分の方程式の
性質を示しました.その先はコンピュータの出現を待たねばなりませんでした.
現在はコンピュータによる数値計算が盛んで,非線形やカオス,分岐理論も研究されています.
モデリングやシミュレーションの現象数理科学も盛んです.

私は数学と数理科学の違いを質問してみました.
数理科学は数学のように厳密な証明の手順がないのではないか.
それとも数理科学というのはコンピュータを用た数学であるのか.
などという漠然とした感じがあったからです.
結論は,どちらも同じである(ニュアンスの個人差はあるが)という事でした.

コンピュータで計算は万能かというと,そうでもないようです.
例として出されたのは調和級数:
1/1+1/2+1/3+・・・+1/n+・・・=lim_n→∞(log n)=∞
ですが,nをずいぶん先までたし行っても,対数ですから級数はなかなか∞にはなりません.

最後に岡本氏が面白い計算を提示しました.
方程式の問題より,数の問題の方が奥が深いということを象徴するためです:
2×3×5×7+11=13+17
2^2+3^2+5^2+・・・・+17^2=1+2+3+・・・・+36=666

0

講演会おしらせ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.06.02] No.066
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
日本数学協会・第14回総会および講演会のお知らせ
日時: 2015年 6月7日,
場所: 東京大学数理科学研究棟(駒場キャンバス)
11:30~12:30 総会
----------------------------------------
13:30~15:40 講演会
13:30~14:30
「十年目の数学月間,これまでとこれから」,片瀬豊・谷克彦(SGK)
14:40~15:40
「視覚と錯視の数学からアート,そして画像処理」,新井仁之(東京大学)
講演会にどうぞお気軽にご参加ください.
協会員は無料ですが,協会員外は参加費2千円かかります.

*******(私の話そうとしていること)*******
数学月間は,数学から社会を見ると同時に,社会からの要請を数学側が知る機会でもあります.
国内外の数学月間テーマのトレンドを見ると,ビッグデータや統計学,複雑系や非線形,
モデリングやシミュレーションの話題です.
これらはすべてコンピュータを駆使した数値計算によって可能になった分野です.
これまでの数学とは違う新しい数学分野が生まれているところと言えるかもしれません.
1900年ポアンカレは,独立な因果列からなる可積分の方程式はごくわずかで,
大部分の方程式は非可積分(干渉し合う因果列)であると警鐘をならしました.
明日の一つの出来事には,今日の全ての出来事の影響が反映される世界です.
遠方の地で過去に起きた蝶の羽ばたきが,この地の明日の大風を引き起こす要因の一つになり得る
「バタフライ・エフェクト」の世界です.
ちょっとした初期パラメータの違いでカオスが起きるかもしれません.
これらは方程式を積分して関数で書き表すことは不可能ですが,
コンピュータを用いた数値計算で現象の追跡ができます.
モデリングとシミュレーションにより現実の現象を理解する
「現象数理科学」がさまざまな分野で発展しています.

0

空間のデジタル化

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.05.26] No.065
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
これは私の造語です.あまり耳慣れない言葉ですが,とても気に入っています.
結晶学では「空間格子」という言葉がでてきますが,「空間のデジタル化」はこれと同じ状況の表現です.
空間のデジタル化とは,「空間を,1つの多面体を並べ(面と面が接するよう)て隙間なく張りつめること」
を意味します.例えば,角砂糖のような立方体を並べて,空間を張り詰めたとすると,
このデジタル化された空間の対称性は,立方体の対称性と同じであることはわかりますね.
”立方体(A)”と同等な対称性の多面体で,空間のデジタル化ができる多面体に,
面心格子を生む”菱形12面体(B)”と,体心格子を生む”ケルビン立体(C)”があります.
これらは立方体の対称性に分類される3種類の空間充填です(Fig).
(この図はpov-rayを用いて作成しました)
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/85/16728485/img_0_m?1432564271

1種類の多面体を互いに面が隙間なく接するようにして空間に詰め込んだ状態を想像してください.
この状態が空間のデジタル化です.
空間のデジタル化の様式を分類したいなら,多面体の対称性に注目すべきでしょう.
一様で連続的な空間が,デジタル化によって,異方性があり周期的な空間に変わります.
無限に広がる空間が,単位となる1つの多面体に還元されます.
すでに,アモルファスと結晶の項目で述べましたが,デジタル化された空間はシンプルで扱いやすい.
このような空間を「結晶空間」と言います.
一寸脱線しますが,連続信号をサンプリングして得たデジタル信号の周波数帯域が抑えられるのと似ています.
結局,3次元では14種類の空間のデジタル化の様式があり,
これは結晶学でブラベー格子が14種類ということと同じことです.

(注)2種類の多面体を使って空間を充填することもいろいろ考察できます.
例えば正8面体と正4面体を使って空間を周期的に充填します.
2種類の多面体の混合による空間の充填では,必ず周期が生じるかといえばそうでもありません.
ペンローズのタイリングに相当する3次元非周期充填もあり得ます.

0

不思議な数式

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.05.19] No.064
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
このような不思議で奇麗な法則があります.
https://www.facebook.com/maxplancksociety/photos/a.10150979253928376.447707.324380493375/10153218754768376/?type=1

1³ + 5³ + 3³ = 153
16³ + 50³ + 33³ = 165033
166³ + 500³ + 333³ = 166500333
1666³ + 5000³ + 3333³ = 166650003333
and so on and om and on!

不思議な数式です.証明してみたくなるでしょう.
いや,なぜこのようなことが起こるのかが知りたいですね.
別の話ですが,似たような数式がまだあります.
ただし,こちらの場合は「数字の桁数が増えていっても,いつも成り立つ」
という性質ではありません.
https://twitter.com/Derektionary/status/484852762102857730

166³ + 500³ + 333³ = 166,500,333
296³ + 584³ + 415³ = 296,584,415
710³ + 656³ + 413³ = 710,656,413
828³ + 538³ + 472³ = 828,538472

閑話休題.初めの不思議な法則の証明法の問題に戻りましょう.
考え方は人さまざまで,証明法には色々あるでしょう.
論理が正しくて,命題が証明されるのならば,どのような証明方法でも正解です.
それでも,「美しい」証明とか「エレガント」な証明とか言われるものがあります.
そのような証明は,「命題の本質にズバリと触れている無駄のないシンプルな証明」
のことだと私は思っています.
補助線一本で解けてしまう図形問題の証明などはその例でしょう.
力ずくで計算して証明できても,命題の本質や現象の起こる仕組みが見えていないのでは,
本質にズバリと触れているとは言えません.
本質や仕組みがわかるということは,その仕組みを基礎とするもっと幅広い命題にも適用できる.
つまり「一般化できる」証明法でもあり価値が高いと思います.

小林昭七先生が「数学と美」というエッセイを,「いまを生きるための教室」角川文庫の中に掲載しています.
(私は小林先生がお亡くなりになる直前の夏の日本滞在中にお会いしこの本を頂きました)
この本から以下の部分を引用しておきます:
「他の科学と同様,数学でも新しい結果は重要である.しかし,数学では既に知られている結果の
別証明や新しい見地からの解釈もかなり評価されている.定理の本質を理解させるような証明,
「なるほどそういうことだったのか」と思わせるような美しい証明は,それが既知の定理の
証明であっても高く評価される」

「数学は美しい」と良く言われますが,美しいと言われても漠然として私にはピンときません.
これを言い換えるなら,「シンプルである」,「本質を見抜いてそれに言及している」,
「話を逸らさないで真摯に課題に集中している」という意味でしょう.

「問題の本質の議論から逃げて,話をそらし,周辺の議論にすり替える」という手法は,
政治や社会で良くみられることです.特に,今の安倍政権では目にあまるものがあります.
「丁寧に説明していく」とよく言いますが,これは聞く耳を持たないと言うことです.
我々の方が説明してあげたいくらい十分な知識があります.国民をバカ扱いしないでもらいたいものです.
論理や数学を軽視する社会に公正はありません.数学月間活動をもっと社会に広げる必要がある所以です.

もう一度,閑話休題で,この不思議な式に戻りましょう.
皆さん証明を考えてみてください.
n桁の数字を $$ (x_n), (y_n), (z_n) $$と書くと,
 $$(x_n+1)=10(x_n)+6,(y_n+1)=10(y_n),(z_n+1)=10(z_n)+3$$

$$(x_n)^3+(y_n)^3+(z_n)^3=(10^2n)(x_n)+(10^n)(y_n)+(z_n)$$ が成立するとして,数学的帰納法で
力ずくで計算して証明することはできるでしょう.でも計算は大変ですし本質は別の所にありそうです.
この問題の本質が何処にあるのか私にもまだ理解できません.皆さん良い証明が出来たら教えてください.
ポイントは循環小数のように続く数字と数の表記法(10進法を使っている)にあるように思います.
多分,以下の表式が利用できます:
$$(x_n+1)=(1+6/9)(10^n)-6/9,(y_n+1)=5*(10^n),(z_n+1)=(3+3/9)(10^n)-3/9$$ 

0

今年の米国MAMの感想☆

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.05.12] No.063
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
2015年米国MAMのテーマ
「数学がキャリアを動かす」
http://www.mathaware.org/mam/2015/highlighted/ より)

自分のキャリアに数学を利用している実在の人物
数学の才能や嗜好を報酬や多様なキャリアに変えた17人

数学が好きだが,数学専攻者にアカデミック以外のどのような仕事があるのかわからない?
幸いなことだが,「数学を専攻するのは今でしょう」というわけだ.
なぜなら,数学がイノベーションの原動力であるようにキャリアも運ぶからだ.
数学の才能と嗜好を,実業界や工業界や政府での多様なキャリアと報酬に替えた17人が紹介される.
彼らが影響を受けたものやそのキャリア・パス選択を見ることは,
アカデミックの外にキャリアを探す数学専攻者にとって,ユニークな見通しや有用なアドバイスになるだろう.

詳しく知るには
http://www.mathaware.org/mam/2015/highlighted/#sthash.gXM8A0oh.dpuf
に17人のプロフィールがあります.17人のうちIBM研究所の人が2人います.
そのほかは,data scientistという人が多いようで,
これらは統計学やコンピュータを用いた数学分野です.

■代表的なプロフィールの例
プロフィール:Jean Steiner
データ・サイエンティスト,Google社,ニューヨーク

私は、工学分野の広告組織Googleのデータ科学者です.
広告主が彼らのgoogle AdWordsアカウントを
どのように管理したらよいかを理解するためにデータを分析し,
彼らに良いツールの提供ができ,彼らのアカウント管理が容易になるようにしています.
私はデータから話を引出し,我々のソフトウエア技術者が良い製品を作るのを助けます.
データ・サイエンティストという役割をする人のほとんどは,
統計学,生物情報学,認知科学,物理学,数学,経済学などの背景を持っています.
私は,アカデミックの場の純粋数学からスタートした
(博士号を取った後,ポスドクフェローシップで研究と教育を行った).
そして,私はやはり定量的であるが,応用的な何かをしたいと思った.
多くの可能なキャリア(例えば、疫学、定量的な金融、経営コンサルティング)
を探しての情報インタビューの結果,Googleで私の関心にぴったり合った仕事を見つけた.
データ解析と,わずかばかりの軽量シェル·スクリプト(コーディング),
ビジネスへの関心が組み合わさっている仕事だ.
当初,私は金融機関で,収益予測,分析,報告をしていたが,
最終的には,より深い分析とより少ない報告を望んでいたので,
データ・サイエンティスの役割に移動した.

■個人的な感想-----
今年の米国MAMのねらいは,数学者の働き場所は大学教授や教員の他にも広範な分野があり
需要があるということにある.「だから数学を学ぶなら今でしょう」という調子だ.
この状況は日本でも全く正しいとは思う.

しかし,今年の米国MAMのキャンペーンのなかで,数学のキャリアは年収が高いとか言うのは眉唾物だと私は思う.
2014年度の高年収職業ベスト10とかワースト10とかは馬鹿げたデータだ.
だいたい高収入が欲しくて数学を専門にするなどおかしな話だ.
17人のプロファイルもそれほど面白くない.
広範な各分野で具体的にどのような数学を用いた仕事や研究をしているのかを知りたいと思ったのだが,
週刊誌の表題程度のレポートで,本年の米国MAMの内容には失望した.

0

不思議な数字6174

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.05.05] No.062
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
ゴールデン・ウイークの最中です.
皆様,よい休日をお過ごしでしょうか.
今週は2つの本を紹介しようと思います.

■「数学を楽しむ」西山豊,現代数学社
6174の不思議はこの本のp.130に出ています.

数学はなんでも証明されているかというとそうでもないらしい.
6174の不思議さを理解するのはちょっと大変.私はまだわかりません.
でも,6174に関する不思議な命題が成立しているのは事実です.
 
6174の各桁の数字の並びを変えて,最も大きい数字を作ると7641,
最も小さい数字を作ると1467です.
最大数字と最小数字の差は 7641-1467=6174 になってしまいます.
6174という数字は不思議ですね.

いろいろな4ケタの数字で実験してみます.例えば,
2005なら
5200-0025=5175
7551-1557=5994
9954-4599=5355
5553-3555=1998
.....
このような操作をカプレカー操作というそうです.
(カブレカーはなんでこんな操作を思いついたのでしょうか不思議です)
頑張って,この先をもう少し繰り返して行くと,結局6174に到着します.
全部同じ数字の場合を除き,どのような4ケタの数かtら出発しても
6174に到達するそうです.不思議ですね.なぜなのだろうか?

西山さんはプログラムを作り,パソコンですべての4ケタの数が,
有限回のカプレカー操作で6174に達することを確かめ,系統図をつくりました.

そのほかの桁数の数字ではどうかというと,
3ケタでは存在するけれど,5ケタでは存在しないそうです.

事実は確かめられましたが,なぜこのようなことが起こるのか?
その仕組みをしりたい.数学の不思議さを感じる例です.

■美しい幾何学, 丸善
高木隆司監訳
Eli Maor and Eugen Jost

ルネサンスの時代は,数学とアートの活動は協力して行われ,
心の中で補い合うものと考えられていた(イーリーによるまえがきより).
オイゲンの数学的アートと数学者(数学史)イーリーの協同でできた本書は珍しい数学の本です.
説明には微積分などは出てきません.子供から大人まで数学アートを鑑賞しながら読み進むことができます.
テーマは系統的な幾何学とは異なります.初級の幾何学もあれば無限級数などもあります.
さらに意外なテーマが現れたり変化に富みます.
取り上げられたいくつかのテーマを見てみましょう.例えば,シュタイナーの円鎖.
これはアルベロスとかインドラの真珠などと呼ばれることもあります.
円の中に互いに接する円を詰め込んだ美しい図形です.円による反転操作もあります.
この図形は和算の算額にも登場しますが,それにも言及しているのは著者の専門が数学史だからでもあり,
本書の構成にもそれが現れています.本書の前半に,ピタゴラスから始まり,
素数,無限級数の収束,ユークリッドなどのテーマが現れます.
さらに続くのは,円周率,積み木による調和級数,自然対数の底,らせんや種々の曲線などです.
これらの説明も,数学アートの図が活きていて面白い本です.
本書の後半には,スノーフレーク曲線,シェルペンスキーの三角形などのフラクタル図形の特徴も,
美しく理解しやすい図による記述があります.

0

面積ゼロで周囲が無限大

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.28] No.061
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
面積がゼロで,周囲が無限大のフラクタル図形

フラクタル図形というのは,図形を拡大していくと,
どんどん細部が見えてくるが,それらがいつも同じ図形なのです.
http://upload.wikimedia.org/wikipedia/commons/6/6a/Sierpinski_zoom.gif

そのような図形のうち,ポーランドの数学者シェルピンスキーの図形の作り方を見てみましょう.

(1)シェルピンスキーのガスケット
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/58/16668258/img_2_m?1429928123

正3角形から出発します.正3角形を4分割して真ん中を通り覗きます.
残った3つの正三角形をそれぞれ4分割して,それぞれの真ん中を取り除きます.
この操作を際限なく(無限に)繰り返して得たフラクタル図形はシェルピンスキーのガスケットです.
面積は0に収束し,境界の長さは無限大に発散します.

(2)シェルピンスキーのカーペット
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/58/16668258/img_3_m?1429928123

正方形から出発し,9分割し真ん中の正方形を取り除きます.
残りの8つの正方形をそれぞれ9分割して,それぞれの真ん中を取り除きます.
この操作を際限なく(無限に)繰り返して得たフラクタル図形はシェルピンスキーのカーペットです.
やはり,面積は0に収束し,境界の長さは無限大に発散します.

これらの図形は,1次元でも,2次元でもありません.
「長さがx倍になった領域に,現在の図形をy個詰め込む」という操作を繰り返したわけですが
  x^d=y (dはフラクタル次元) より,フラクタル次元は d=logy/logx です. 
フラクタル次元は,(1)ガスケット3角形では1.585・・・,(2)カーペット4角形では1.89・・・・になります.

0

結晶とガラスの数学

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.21] No.060
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
■結晶とガラスについての話です.
まず,石英(水晶)と石英ガラスの2次元の模式図を見て下さい.
図はwikipediaから借りました.どちらも材料の化学式はSiO2で同じです.
Fig.1 結晶
http://upload.wikimedia.org/wikipedia/commons/f/fd/SiO2_-_Quarz_-_2D.png
Fig.2 ガラス
http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/SiO2_-_Glas_-_2D.png/240px-SiO2_-_Glas_-_2D.png

結晶とガラスの違いは一目瞭然でしょう.
そう,結晶構造には繰り返し周期がありますが,ガラスにはありません.
Fig.3に示すように,結晶には単位となるタイルがあり,これで無限平面を隙間なく張りつめることができます.
石英の例では,正6角形のタイルを,赤点の場所に置けば,無限平面を隙間なく張り尽くせます.
赤点は格子点と呼ばれます.格子は,図中に示した2つの互いに独立なベクトルa1,a2の
一次結合ha1+ka2により生成されるベクトルを集めた無限集合(並進群)の図による表現でもあります.
Fig.3 結晶構造にある並進群
http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/545271/26/16652126/img_0_m?1429350335

■結晶空間は並進周期のある空間です.結晶構造は規則正しい秩序のある構造ですから,
並進操作以外にも回転対称操作とか鏡映対称操作などあり,
構造に存在するこれらの操作を続たとき生じる対称操作全体の無限集合は”群”をなしています.
生成される対称操作はこの集合に含まれるし,すべての操作に逆元があり,
何も動かさないという単位元もあります.
結晶空間(周期のある無限空間)の対称操作の集合のなす群を結晶空間群と言います.
今日,ここで扱ったような2次元の平面群(壁紙模様)は17種類あることが知られています.
並進(格子点間の移動)で重なるものは同値と定義すると,
無限に広がる結晶構造を,単位タイルの中に押し込めることができます.数学の言葉で言うと,
「並進群を核とする準同型写像で結晶空間群は結晶点群に帰着する」ということになります.
私はこの理論が大好きでした.しかし皮肉なもので,実際に扱った材料は結晶ではなく
群論の適用ができないガラスが中心になりました.

■ガラスの構造をどう解析し記述するかというのは,今日でも困難な課題です.
結晶で活躍する群論もFourier変換も役に立ちません.ガラス(一般化してアモルファスと言う)には,
単位タイルと言うものがありません.結晶構造では,
無限にある構成原子のパラメータは単位タイルに含まれる有限個に還元することができましたが,
ガラスでは無限個の構成原子のパラメータを減らせません(実際にコンピュータで扱うのは有限個).
結晶空間は単位タイルによってデジタル化された空間,他方,アモルファス空間は連続空間(アナログ空間)です.
ガラス構造では,結晶のようにすべての構成原子のパラメータを記述するのは諦めねばなりません.
そこで古くから,1つの原子を中心に置いて.半径r+Δrの球殻上に何個の原子が存在するのか
というような確率的な記述(動径分布関数)が用いられてきました.
最近は,アモルファス構造を特徴づけるいくつかのトポロジー量を定義することもやられています.
Fig.2を見るとリングがたくさん見えるでしょう.ガラス構造の中に,何員環がどれだけ存在するかとか,
ベッチ数とか連結数などの特性量,さらにパーシステントホモロジーの計算がなされ,
これにより詳細なアモルファスの特徴量が得られるようになりました.
これらのトポロジー量は,大きな原子数のアモルファス構造のモデルから,
シミュレーションにより決定された原子の座標値のビッグデータを土台に導出されます.
******
(編集後記)
今回のメルマガでガラスの構造について書こうと思ったのは,
4月16日の文科省の講演会「数学は世界を変えられるか?」で数学イノベーションの紹介例3つの内に
ガラス構造への応用トポロジー(東北大)があったからです.
この講演会の主旨は,数学と社会・諸科学の連携です(ガラス構造の研究発表ではありません).
数学連携に関する個人的感想は(メルマガ分量オーバーのため).以下のサイトに書きました:
http://sgk2005.sakura.ne.jp/htdocs/index.php?key=joth4d0ko-36

0

積めば積むほど長くなる

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2015.04.14] No.059
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━

http://blogs.c.yimg.jp/res/blog-09-2d/tanidr/folder/556225/69/16381169/img_0_m?1428931802

計算することも大事ですが,このような感覚を体に身に着けることは有益です.
有限個の積み木を積んで長さの記録を競います.
無限個の積み木を積むなら,少しずつですが無限に伸びる対数曲線ができます.
(例1)発散する無限級数を体験する
  1+1/2+1/3+1/4+.......+1/n+....=∞
積み木の長さの半分を1とする.
一番上の積み木の飛び出している長さは1
その下の積み木の飛び出している長さは1/2
その下の積み木の飛び出している長さは1/3
.....以下同様にいくらでも続きます.

(例2)収束する無限級数を体験する
  1/2+1/4+1/8+1/16+........=1
総和でできる立方体の体積を1とする.
立方体の内部の1/2の体積(オレンジ)を取り除く
残りの体積から残りの体積の1/2(グリーン)つまり立方体の(1/2)^2を取り除く
その残りの体積の1/2(青)つまり立方体の(1/2)^3を取り除く
その残りの体積の1/2(赤)つまり立方体の(1/2)^4を取り除く
......以下同様にいくらでも続きます.

私達は子供の頃,積み木を積んで遊びました.そして自然に重心や釣合の感覚が身に着きました.
水遊びをして流体の性質を自然に身に着けました.
後に学校で物理学を学びますが,そのような理論を学ばずとも重力や力学の法則が身に着いていました.
身に着いていなければキャッチボールもできません.
吹きガラスの職人になるには,熔融ガラスの振る舞いを瞬時に判断できることが
身に着いていなければなりません.数学でもこのような体験は大事なことだと思います.

0