ブログ倉庫

磁場は軸性ベクトル

■ 電場$$\textrm{E}$$や電流密度$$\textrm{j}$$を極性ベクトルとすると,磁場$$\textrm{H}$$は軸性ベクトルになる.
それは,次のMaxwell方程式が成立しているためです.
$$ \nabla \times \textrm{H}=\displaystyle \frac{1}{c}\displaystyle \frac{ \partial \textrm{E } }{ \partial t}+\displaystyle \frac{4\pi \textrm{j } }{c}$$の右辺は極性ベクトルですから,$$ \nabla \times \textrm{H}$$は極性ベクトルであることになり,$$ \nabla $$が極性ベクトルなので,$$\textrm{H}$$は軸性ベクトルでなければならない.
極性ベクトル$$ \times $$軸性ベクトル=極性ベクトル 
極性ベクトル$$ \times $$極性ベクトル=軸性ベクトル 
の関係があり,これを用いました.

$$ \nabla \times \textrm{H}$$,(あるいは,$$\textrm{rot H}$$)という演算の結果は,ベクトル$$\textrm{H}$$の回転面に垂直な軸性ベクトル(その方向は,回転を右ネジに見立てて進む方向)を与えます.この例の軸性ベクトルは$$ \nabla $$とHの2つのベクトルの外積で定義されたもので,その物理的実態は$$\textrm{H}$$の回転面の円軌道にそって流れる電流です.回転方向を,角速度などと同様に,外積を借りて定義しただけで,実態は円軌道という物理現象だけです.右手座標系でも,左手座標系でも,外積自体は右手系で定義するのが慣習です.右手座標系で定義された軸性ベクトルを左手座標系で記述すると,軸性ベクトルの向きは反転します.

詳細は:⇒極性ベクトル軸性ベクトルの項をご覧ください.

 

0

極性ベクトル軸性ベクトル

座標系を反転すると,右手系で見た座標値$$(x_{1}, x_{2}, x_{3})$$が左手系で見た座標値$$(x_{1}'=-x_{1}, x_{2}'=-x_{2}, x_{3}'=-x_{3})$$に変わります.

座標系の反転で,座標成分の符号が変るのが,極性ベクトル(変位,速度,力,運動量など);
座標成分の符号が変わらないものが軸性ベクトル(角速度,角運動量,モーメントなど)と言われます.
軸性ベクトルとは,2つの極性ベクトル間の外積で定義されるものです.

軸性べクトルは,座標系の反転で座標成分の符号が変わらないというのは本当でしょうか?
納得できないので,これを確かめてみましょう.

■ 右手系と左手系基底の定義 
2つの正規直交基底$$ \left[ e_{1}, e_{2}, e_{3} \right] $$,および,$$\left[ e_{1}', e_{2}', e_{3}' \right] $$があるとします.
正規直交基底は, $$e_{i} \cdot e_{j}=\delta _{ij}$$, $$e_{i} \times e_{j}=-e_{j} \times e_{i}$$, $$e_{i} \times e_{i}=0$$が成立ちます.
右手系では, $$e_{2} \times e_{3}=e_{1}$$,$$e_{3} \times e_{1}=e_{2}$$,$$e_{1} \times e_{2}=e_{3}$$ が成立します.
空間反転$$e_{1}'=-e_{1},e_{2}'=-e_{2},e_{3}'=-e_{3}$$して得られる基底$$\left[ e_{1}', e_{2}', e_{3}' \right] $$では, 
 $$(-e_{2}') \times (-e_{3}')=(-e_{1}'),(-e_{3}') \times (-e_{1}')=(-e_{2}'),(-e_{1}') \times (-e_{2}')=(-e_{3}')$$
すなわち,$$e_{3}' \times e_{2}'=e_{1}',e_{1}' \times e_{3}'=e_{2}',e_{2}' \times e_{1}'=e_{3}'$$が得られます.この座標系は左手系になります.

■ 位置ベクトル,運動量ベクトル(ともに極性ベクトル)を,右手系と左手系で標示すると,
位置ベクトル:$$r=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3}=x_{1}'e_{1}'+x_{2}'e_{2}'+x_{3}'e_{3}'=-x_{1}e_{1}'-x_{2}e_{2}'-x_{3}e_{3}'$$
運動量ベクトル:$$p=p_{1}e_{1}+p_{2}e_{2}+p_{3}e_{3}=-p_{1}e_{1}'-p_{2}e_{2}'-p_{3}e_{3}'$$
このように,極性ベクトルの座標値は,座標系の反転で符号を変えることがわかる.

■ 角運動量ベクトル(軸性ベクトル)を,右手系と左手系で標示する.
$$L=r \times p=\left( x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3} \right) \times \left( p_{1}e_{1}+p_{2}e_{2}+p_{3}e_{3} \right) =$$
$$=-x_{2}p_{1}e_{3}+x_{3}p_{1}e_{2}+x_{1}p_{2}e_{3}-x_{3}p_{2}e_{1}-x_{1}p_{3}e_{2}+x_{2}p_{3}e_{1}=$$
$$=\left( x_{2}p_{3}-x_{3}p_{2} \right) e_{1}+\left( x_{3}p_{1}-x_{1}p_{3} \right) e_{2}+\left( x_{1}p_{2}-x_{2}p_{1} \right) e_{3}=$$ 
$$=-\left( x_{2}p_{3}-x_{3}p_{2} \right) e_{1}'-\left( x_{3}p_{1}-x_{1}p_{3} \right) e_{2}'-\left( x_{1}p_{2}-x_{2}p_{2} \right) e_{3}'$$
最後の式で基底を反転している.左手系での座標値は,右手系の座標値の符号を反転したものになる.
$$e_{2} \times e_{3}=e_{1} \longrightarrow \left( -e_{2}' \right) \times \left( -e_{3}' \right) =\left( -e_{1}' \right)  \longrightarrow e_{3}' \times e_{2}'=e_{1}'$$

■(結論)
座標系の反転(右手系基底[$$e_{1}, e_{2}, e_{3}$$]$$ \longleftrightarrow $$左手系基底[$$e_{1}'=-e_{1}, e_{2}'=-e_{2}, e_{3}'=-e_{3}$$]
をしたときに; 
(1) 極性ベクトルは,
反転後の基底についての座標値は,反転前の基底に対する座標値の符号を変えたものになるが,基底自体も反転しているので実態は変わらない.
(2) 軸性ベクトルは, 
反転後の基底についての座標値は,反転前の基底に対する座標値の符号を変える.軸性ベクトルは外積で定義された向きを持つが,座標系が左手系であっても外積の定義は右手系でなされているので,左手系では向きを変える.

しかし,実態は回転現象でありこの状態が変わるわけではない.

$$e_{1}$$だけ反転(鏡映対称):奇数パリティ⇒$$x_{1}$$だけ符号反転
$$e_{1}, e_{2}$$の2つを反転($$e_{3}$$を軸とする2回対称):偶数パリティ⇒符号の変化なし
$$e_{1}, e_{2}, e_{3}$$の3つを反転(対称心:奇数パリティ)⇒すべての座標値の符号を変える

 

0

シュブニコフとハリコフ研究所

ロシアがウクライナ東部のハリコフ占領の恐れと煽りたて,軍を進めるバイデン政権と,その米国の情報に追従する日本の大手新聞やテレビ報道を鵜呑みにしてはいけません.かつての湾岸戦争の勃発も米国の情報操作からでした.ロシアの中庭のようなウクライナをNATO軍事同盟に加盟させるのはおかしいし,米軍がウクライナ東部に軍を進めていること自体が,緊張を高める挑発です.ウクライナがNATOに加盟しなければ,ロシアは戦争を始めません.ロシア人同士が利益のない戦争を好むわけがありません.
https://iwj.co.jp/wj/open/archives/501693?fbclid=IwAR2G79BFL4C804PPmKIPhBl6pBh23tps_VRkQGG-V1JHYH8bDrZdvng4wHM

ウクライナ人民共和国は,第1次世界大戦では,ドイツ側でソ連と戦ったのですが,両国間で和平が成立し,その後,ソ連邦の一員となります.

第2次大戦では,ナチス・ドイツは,ソ連に対抗するのにウクライナ・ナショナリズムを利用します.一方,スターリンは大祖国戦争と呼び,ナチス・ドイツとの戦いにウクライナを利用します.都市ハリコフは,赤軍とナチス軍との激戦地になりました.ウクライナ・ナショナリズムは,東西の対立勢力にいつも利用されます.今日,米国がNATO軍事同盟にウクライナを加盟させようと,東部ウクライナで危機を煽り,ゼレンスキーは政権安定のためにナショナリズムを煽ります.ハリコフのあるウクライナ東部に住んでいるのは,ほとんどロシア人で親ロシア派です.ロシア軍との戦争は無意味です.

ここで,私は,ハリコフという都市にある,ソ連時代の物理学研究所の歴史を,シュブニコフの活動を軸に述べようと思います.

ハリコフはキエフとならぶウクライナの都市です.ソ連時代の1928年に,ヨッフェが物理学研究所を開設し,1931年にL.V.シュブニコフが極低温研究所を作りました.シュブニコフ=ド・ハース効果に名前を冠したL.V.シュブニコフです.私は黒-白群(シュブニコフ群)に関心がありますが,これに名を冠しているのは,別人のA.V.シュブニコフです.

L.V.(レフ・ワシリエヴィチ)・シュブニコフは,1901年9月29日,レニングラードで生まれ,ペトログラード大学物理数学学部の数学科に入学.物理学を専門に学びました.その年の学生は彼一人だったので,一学年上の学生,S.E.フリッシュ,V.A.フォク,一学年下の学生,A.V.ティモレヴァ,O.N.トラペズニコヴァ(1925年に彼の妻となる)と一緒に講義を聴きました.

物理学科(1919年に分離)の学生や教師は,ヨットが好きでした.シュブニコフも熱心な一人で,1921年秋,フィンランド湾のヨットに見知らぬ人たちと一緒に行き,気がつくとフィンランドにおりました.そこからドイツに追放され,1922年にようやくペトログラードに戻ることができました.工科大学で勉強を続け1926年に卒業します.

研究室では,I.V.オブライモフといっしょに,ある形状の大きな金属単結晶を成長させる方法を完成させた.1926年,ドイツのライデンのド・ハース研究所で,この分野の専門家が必要になったときに,A.F.ヨッフェの推薦でシュブニコフが派遣されました.

当時のライデンは世界で唯一液体ヘリウムを持っている研究所で,さまざまな専門分野の物理学者がライデンに集まりました.P.エーレンフェストは,ライデン大学で理論物理学の講座を開いており,刺激的なエーレンフェストのセミナーでは,A・アインシュタイン,N・ボーア,W・パウリ,P・ディラックらとも知り合うことができました.

ライデン研究所では,ド・ハースと共同で,低温で不純物濃度の低いビスマス結晶の研究で,磁場中の磁気抵抗の振動(シュブニコフ=ド・ハース効果)を発見しています.この効果が物性物理学に重要な意味を持つようになったのは,ずっと後の50〜60年代のことです.現在では,この効果は、固体の量子電子物性を調べるための主要な手段の一つとなっています.

ライデンのモットーは「測定から知識へ」で,シュブニコフにとって実験技術の良い学校でありました.常駐の研究所員やセミナーや研修のための訪問者との交流によって,彼は科学技術を習得ができました.

ヨッフェは1928年に,ウクライナのハリコフに物理学研究所を設立し,1930年にライデンから戻ったシュブニコフは,ここに低温研究所を作ることになります.1931年には早くも液体水素,1933年には液体ヘリウムを得て,1934年からは,当時世界で4番目の極低温センターの誕生の宣言をします.この成功は、シュブニコフの功績に間違いないが,ライデンの研究所長であるド・ハースと,当時ソ連では入手不可能な材料や器具をハリコフに移したキーソムの協力があって実現したものです.

シュブニコフの研究所では,低温技術は優れた監督者 I.P.コロレフが指揮し,
吹きガラスはE.V.ペトゥシコフが行いました.研究所の最初のスタッフにはYu.V.シュブニコフ,その後,ルデンコ,フェドロワ,ミルチン,ベレシュチャギン,ズルニツィン,アレクセーフスキー,キコイン,シャリュートと続き現在に至っています.ドイツからも,契約を結んだり,ナチスの迫害を逃れてきた物理学者たちが研究室で働いていました.

この研究所の主な活動の1つに,超伝導の研究があります.低温物理学の発展に貢献したL.V.シュブニコフの研究者の多くは,マイスナー効果はマイスナーとは無関係で,シュブニコフが彼とほぼ同時に発見したと考えています.また,クルト・メンデルスゾーンによると,合金の磁気特性の研究では,ハリコフ研究所はライデンやオックスフォードより進んでいたという.シュブニコフらの業績に敬意を表し,Hc1-Hc2磁場区間におけるタイプP超伝導体の状態は,シュブニコフ相と呼ばれています.

L.V.シュブニコフの研究室では,遷移金属塩化物の熱的,磁気的性質の研究に大きな成果を挙げ,これが反強磁性現象の実験的発見につながり,L.D.ランダウの興味を刺激したと考えられます.

L.V.シュブニコフとL.D.ランダウは,仕事だけでなく,親しい友人関係でもありました.どちらの名前もLevなので,太ったレオ,痩せたレオと呼ばれたのは面白い.二人ともハリコフ大学の物理学科で教鞭をとりました.

 

しかし,1937年8月6日,L.V.シュブニコフがL.D.ランダウと一緒にクリミアで過ごした休暇から戻った日に逮捕され,スターリンによる粛清の犠牲者となりました.いわれのない破壊活動の罪で起訴され,11月10日に銃殺刑になりました.記録は改竄され,死体もわからず,未亡人は彼が1945年死んだと知らされたといいます.

1956年にL.D.ランダウらにより名誉回復が行われました.ランダウが軍の検察官あてに出した書類は次のようです:
「彼の研究論文の多くは画期的な古典であります.彼がソ連のこの分野の創始者の一人であったことを考えると,低温物理学の分野での彼の破壊活動について話すのはまったくばかげています.彼の熱烈な愛国心は,彼がソ連での仕事のためにオランダでの仕事を自発的に辞めたという事実によって強調されています.L.V.シュブニコフの早すぎる死によって国内科学に引き起こされた損害は,いかなる過大評価も間に合わないほどです」

引用:http://www.ilt.kharkov.ua/bvi/info/shubnikov/shubnikov.html

0

test

$$
\begin{vmatrix}
1 & -\textrm{cos}\alpha _{1} & -\textrm{cos}\alpha _{3} \\[0mm]
-\textrm{cos}\alpha _{1} & 1 & -\textrm{cos}\alpha _{2} \\[0mm]
-\textrm{cos}\alpha _{3} & -\textrm{cos}\alpha_{2} & 1
\end{vmatrix} =1-\textrm{cos}^{2}\alpha _{1}-\textrm{cos}^{2}\alpha _{2}-\textrm{cos}^{2}\alpha _{3}+2\textrm{cos}\alpha _{1}\textrm{cos}\alpha _{2}\textrm{cos}\alpha _{3} \\ 
=-4\textrm{cos}\left( \displaystyle \frac{\alpha _{1}+\alpha _{2}+\alpha _{3 } }{2} \right) \textrm{cos}\left( \displaystyle \frac{-\alpha _{1}+\alpha _{2}+\alpha _{3 } }{2} \right) \textrm{cos}\left( \displaystyle \frac{-\alpha _{2}+\alpha _{1}+\alpha _{3 } }{2} \right) \textrm{cos}\left( \displaystyle \frac{-\alpha _{3}+\alpha _{1}+\alpha _{2 } }{2} \right)
$$

$$
=\begin{cases}
>0 & \Longleftrightarrow & \alpha _{1}+\alpha _{2}+\alpha _{3}>\pi \\[0mm]
=0 & \Longleftrightarrow & \alpha _{1}+\alpha _{2}+\alpha _{3}=\pi \\[0mm]
<0 & \Longleftrightarrow & \alpha _{1}+\alpha _{2}+\alpha _{3}<\pi
\end{cases}
$$

0

立体万華鏡

 

 

 

 

 

 

 

 

 

立方格子の空間を見る万華鏡は,立方体の単位胞内の対称面を鏡に選び4枚鏡の万華鏡を作ります.
立方体にある対称面には立方体の正方形面に平行なものや,正方形の面と45°方位のものがあります.
上図の万華鏡では,(1)△ABC,△ABO,△ACO,△BCOを鏡映面にした万華鏡,(2)△ACO,△ACD,△AOD,△DCOを鏡映面にした(1)の半分体積の万華鏡,(3)△ABO',△ABO,△AO'O,△BO'Oを鏡映面にした(1)の2倍体積の万華鏡を示しました.それら3つの万華鏡の作製と映像の記事は別項

これらは,3次元ユークリッド空間の「立体万華鏡」の例です.(上の写真は「美しい幾何学」p.47より引用)

ここでは,ユークリッド空間だけでなく,非ユークリッド空間(球面・楕円幾何,双曲幾何)の3角形面を用いた多面体についてまとめて数学の話をします.

正多面体の面のなす角(二面角)の話から始めます.凸正多面体Mとその頂点の1つを中心とする小球がよぎる線は,凸球面正多角形を形成します.
頂点から$${q}$$本の辺が出ているとすると,凸球面多角形の頂角(辺の二面角)の和は$${π(q-2)}$$よりも大きい.
正多面体Mのすべての二面角が$${π/2}$$を超えない(たとえば,コクセター多面体)場合,各頂点から出る辺は3本だけであることがわかります.この最後の性質を持つ多面体を単純多面体と呼びます.4面体や立方体は単純多面体ですが,8面体は単純多面体ではありません.

しかし,この単純な不等式だけでは,凸多面体の二面角の関係を網羅することはできません.最も単純なMが三角錐の場合について考えてみましょう.その面に番号をつけ,$${i}$$ 番目と$${ j}$$ 番目の面のなす角を $${α_{ij} = α_{ji } }$$ とします.ユークリッド三角錐の二面角が次の関係にあることは,線形代数によって簡単に証明できます.

$$
\begin{vmatrix}
1 & -\textrm{cos}\alpha _{12} & -\textrm{cos}\alpha _{13 } &
-\textrm{cos}\alpha _{14 } \\[0mm]
-\textrm{cos}\alpha _{12} & 1 & -\textrm{cos}\alpha _{23} &
-\textrm{cos}\alpha _{24} \\[0mm]
-\textrm{cos}\alpha _{13} & -\textrm{cos}\alpha _{23} & 1 &
-\textrm{cos}\alpha _{34} \\[0mm]
-\textrm{cos}\alpha _{14} & -\textrm{cos}\alpha _{24} &
-\textrm{cos}\alpha _{34} & 1
\end{vmatrix} =0
$$                                                

左辺の行列式は,ピラミッドの面に対する単位法線ベクトルのグラム行列式[ベクトルの内積が成分]で,0に等しいのは,これらのベクトルが線形従属であることによります.

注)二面角を$${α}$$とすると,対応する面の法線ベクトルの内積は,$$\textrm{cos}(π-α)=-\textrm{cos}α$$となります.
試しに,ユークリッド三角形とすると,$${α_{12}=α_{1}, α_{13}=α_{2}, α_{23}=α_{3 } }$$ になり,

$$
\begin{vmatrix}
1 & -\textrm{cos}\alpha_{1} & -\textrm{cos}\alpha_{2} \\[0mm]
-\textrm{cos}\alpha_{1} & 1 & -\textrm{cos}\alpha_{3} \\[0mm]
-\textrm{cos}\alpha_{2} & -\textrm{cos}\alpha_{3} & 1
\end{vmatrix} =0
$$

この簡単な場合からは,$${α_{1}+α_{2}+α_{3}=π}$$ が得られます.

証明(Andreevより)

$$
\begin{vmatrix}
1 & -\textrm{cos}\alpha _{1} & -\textrm{cos}\alpha _{3} \\[0mm]
-\textrm{cos}\alpha _{1} & 1 & -\textrm{cos}\alpha _{2} \\[0mm]
-\textrm{cos}\alpha _{3} & -\textrm{cos}\alpha_{2} & 1
\end{vmatrix} =1-\textrm{cos}^{2}\alpha _{1}-\textrm{cos}^{2}\alpha _{2}-\textrm{cos}^{2}\alpha _{3}+2\textrm{cos}\alpha _{1}\textrm{cos}\alpha _{2}\textrm{cos}\alpha _{3} \\ 
=-4\textrm{cos}\left( \displaystyle \frac{\alpha _{1}+\alpha _{2}+\alpha _{3 } }{2} \right) \textrm{cos}\left( \displaystyle \frac{-\alpha _{1}+\alpha _{2}+\alpha _{3 } }{2} \right) \textrm{cos}\left( \displaystyle \frac{-\alpha _{2}+\alpha _{1}+\alpha _{3 } }{2} \right) \textrm{cos}\left( \displaystyle \frac{-\alpha _{3}+\alpha _{1}+\alpha _{2 } }{2} \right)
$$

$$
=\begin{cases}
>0 & \Longleftrightarrow & \alpha _{1}+\alpha _{2}+\alpha _{3}>\pi \\[0mm]
=0 & \Longleftrightarrow & \alpha _{1}+\alpha _{2}+\alpha _{3}=\pi \\[0mm]
<0 & \Longleftrightarrow & \alpha _{1}+\alpha _{2}+\alpha _{3}<\pi
\end{cases}
$$

なぜならば,
$${0<\alpha _{1}, \alpha _{2}, \alpha _{3}<\pi /2}$$なので,$${-\pi <-\alpha _{i}+\alpha _{j}+\alpha _{k}<\pi}$$,$${\textrm{cos}\left( \displaystyle \frac{-\alpha _{i}+\alpha _{j}+\alpha _{k } }{2} \right) >0}$$であり,
従って,式の$${ \pm }$$は,$${\textrm{cos}\left( \displaystyle \frac{\alpha _{1}+\alpha _{2}+\alpha _{3 } }{2} \right) }$$の$${ \mp }$$で決まる(複合同順).

始めに示した関係式は,先に導いた不等式と合わせて,二面角$${α_{ij } }$$を持つ三角錐がユークリッド空間に存在するための必要十分条件となります.これを利用すると,二面角が$${π/}$$整数であるユークリッド空間の三角錐をすべて求めることができ,その数は3つです.図7で,マークのない辺の二面角は$${π / 2}$$,マーク|あるいは||のついた辺の二面角は,それぞれ,$${π / 3}$$または$${π / 4}$$です.図7のピラミッドのうち,1つ目のピラミッドを対称面によって切断すると2つ目のピラミッドが得られ,2つ目のピラミッドを対称面で切断すると3つ目のピラミッドが得られます.

 

 

 

 

 

3次元ユークリッド空間には,この3つの万華鏡のほかに,ある意味で2次元に還元された万華鏡が4つだけあります.これは、直角プリズム(3角柱)の底面が2次元の万華鏡であるものです.

3次元ユークリッド万華鏡は,結晶学と密接な関係があります.このような万華鏡の中にいくつかの原子を配置し,万華鏡の壁で繰り返し反射させ得られる像をすべて調べると,結晶格子を得ることができます.つまり,図7に示した万華鏡のうち,1番目の万華鏡で,炭素原子Cを図に示した2つの頂点に置くとダイヤモンドの結晶格子が得られ,2番目の万華鏡で,ナトリウムNaと塩素Clの原子を図に示した頂点に置くと,食塩の結晶格子が得られます.

3次元球面上の万華鏡をすべて見つけることも難しくありません.このすべてが,球面三角錐です.この場合,ユークリッド平面から球面に移るとき,三角形の内角の和が$$π$$より大きくなるので,始めに示した式の等号が不等号$$>$$に置き換えられます.

引用:
E. B. Vinberg, published in the "Soros Educational Journal" (1997, No. 2)
«КВАНТ» No6, 2020

 

0