ブログ倉庫

美術・図工 コクセター万華鏡を作る

Fig.1の円盤内部は双曲幾何の支配する世界で,ポアンカレの円盤モデルと呼ばれます.
この円盤世界の直線は,円盤の縁に直交する円弧です.もちろん,円盤の中心を通る直線は円盤の縁で直交するので,この円盤世界でも直線です.
この円盤世界は,正7角形のタイルが頂点で3つ集まるように敷き詰められています[双曲面の正則分割{7,3}].正7角形の辺は,この双曲世界の直線でできています.
直線に沿って円盤の縁に向かって進んだとすると,自分の世界もどんどん小さくなり縁に到達するには無限の時間がかかるようになっている世界です.
{7,3}分割の正7角形のタイルは,円盤の縁に近づくにつれどんどん小さくなっていますが,円盤の中にいる人にとっては全部同じ大きさ(言葉をかえれば円盤内は無限に広い)です.

Fig.1                      Fig.2


コクセター万華鏡は,正7角形タイルの中を14個の直角3角形(7,3,2)に分割してできます.この直角3角形の頂点の角度は(π/7,π/3,π/2)ですから,直角3角形(7,3,2)と略記しました.

この直角3角形を鏡室にして作った万華鏡をコクセター万華鏡と呼ぶことにしました.
それは,同様な分割{6,4}の論文をコクセターがエッシャーに送って,それがエッシャーの極限としての円の作品を生んだからです.
{7,3}分割を直角3角形(7,3,2)のコクセター万華鏡にすると,Fig.2のように3角形のどの頂点周りにも偶数の直角3角形が集まるので,円盤内の世界全体が市松模様になります.

円弧の1つを円柱鏡にして,この円弧で分けられた左世界の像を映し出した実験をした撮影してみましたFig.3.右世界の像は左の世界の鏡像なので,円柱鏡を境として市松模様が逆転しているのがわかるでしょう.
Fig.3

0

美術・図工 円柱鏡の収差

円柱鏡(円の内側で反射)の焦点は収差のため,このような曲線になります.
このような反射光線のが作る包絡線の形を“火線”といいます.
この曲線の形はネフロイド(サイクロイドの仲間)と呼ばれます.

 ■コクセター万華鏡
このコクセター万華鏡は直角3角形(7,3,2)の辺を鏡にして作られます.
この双曲幾何のポアンカレ円盤世界の直線は,円盤の縁で直交する円弧です.

双曲面の正則分割{7,3}の正7角形を,直角3角形(7,3,2)で細分したコクセター万華鏡を示します.

この万華鏡像は,
直角3角形(7,3,2)の辺を鏡にして,円による反転(数学的演算)により得られます.

しかしながら,円柱鏡による反射像には収差があるので,反射を繰り返すとボケてしまいます.
円柱鏡の1回反射の実験例を示します.右側世界は左側世界の鏡像なので,市松模様が鏡面に沿ってずれているのがわかるでしょう.

0

美術・図工 カオス,フラクタル

■風が吹けば桶屋が儲かるバタフライ効果

バタフライ効果とは,気象学者のエドワード・ローレンツが1972年にアメリカ科学振興協会で行った講演のタイトル”予測可能性:ブラジルの1匹の蝶の羽ばたきはテキサスで竜巻を引き起こすか?”に由来します.

複雑系では,単純な因果列ではなく,あらゆる原因がどの結果にも反映されるので,予測できない結果をもたらす可能性があることを言います.

□定まっているようで定まらない運命

系の運動を記述する方程式は正しく作れるのだが,この方程式の解析解が求まる(可積分)とは限りません.現実は,非可積分の場合がほとんどで,教科書で習う可積分の場合は例外的幸運な場合です.1880年代にポアンカレは,ニュートンの運動方程式ですべての運動が定まっているはずの世界で,三体問題は解析解が得られないことを証明しました.

□非可積分の世界とバタフライ効果

非可積分の方程式の解は,コンピュータによる数値計算で求めることができます.しかし,このような系の解では,方程式のパラメータや初期値によって,解が分岐したりカオスと呼ばれる定まらない状態になったりします.

このような状態は,ロジスティク写像の漸化式Xn+1=aXn(1-Xn) や同様な漸化式 Xn+1=Xn2+λ でも見られます.ここで得られる実数列 Xn(n→∞)が,実数パラメータλやaの値により,振動したり発散したり,定まらない状態になったりすることが起こります.また,初期値のごくわずかのずれが,Xnの劇的な変化を生むことがあります.これがバタフライ効果と呼ばれる所以です.

■マンデルブロの登場とフラクタル

IBMトーマス・J・ワトソン研究所にいたマンデルブロは,綿花などの価格変動を調べていて,不規則な変動データの中に隠れている自己相似性を見つけフラクタルとなずけました.フラクタル幾何学は1982年に発表されました.

 マンデルブロ集合(奇妙なフラクタル構造)と言うのは,

f(z) = z2 + Cという写像で生まれる複素数列を,

初期値z0 = 0として,z1 = f(z0), z2 = f(z1), …とくり返し計算し,n → ∞で|z|が発散しないような,複素平面上の複素数Cの集合「初項z0 = 0に対して,発散しないCは何か」のことです.

マンデルブロ集合の境界(数列が発散する/しないの限界)ではカオスの発生があり,美しく不思議に入り乱れたフラクタルが見られます.

 

0

美術・図工 菱形30面体像の万華鏡を作る

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.1

 菱形30面体と12・20面体とは互いに双対な多面体です.双対の説明はFig1に図示しました.さらに,12・20面体は互いに双対な正12面体と正20面体とを重ねたときの共通部分でもあります.

注)Fig.1の重な合わせでは,共通部分はサッカーボール[5,6,6]の半正多面体ですが,正20面体のを少しづつ大きくしていくと,[5,3,5,3]の半正多面体(12・20面体)になる点があります.

 

 

 

 

菱形30面体の頂点は,正12面体の頂点(3回軸の位置)と正20面体の頂点(5回軸の位置)とから構成されています.菱形面の短対角線(正12面体の正5角形面の辺長)をaとし,長対角線(正20面体の正3角形面の辺長)をbとすると,a:b=1:Φ=2:1+√5 の黄金比です.正12面体の頂点のうちの8個を使い,一辺Φaの立方体を内接できるので,正12面体の外接球の半径は,R12=√3Φa/2です.
一方,正20面体の外接球の半径は,R20=(b/4)√(10+2√5)です.

寸法をa=2,b=1+√5,Φ=1.618にすると,R12=2.80,R20=3.08が得られます.
実際の製作は展開図に記入した寸法(10倍)にすると作り易いです.

ミラー紙(厚さ0.25mm程度の厚紙)を使って,展開図の鏡を作りピラミッド(内側が鏡)のような形に組み立てます.O点は立体(ピラミッド)の中心に相当し,O点の周囲は光の窓になります.覗くのは菱形面(ピラミッドの底面)の外部からです.

 

 

0

理科・実験 シャボン膜の実験

針金で正4面体ABCDを作り,持ち手をつけて,正4面体をシャボン液の中に浸してからゆっくり引き上げると,どのような面にシャボン膜ができるでしょうか?
実験してみてください.針金枠の正4面体の面にシャボン膜ができると思いますか?

 

 

 

 

 

 

 

 

 

 

多分,正4面体の中心Oと正4面体の辺でできる三角形,例えば,△OABなどの膜ができると思います.正4面体は辺が6個ありますから,このような膜は6枚あります.
Oから正4面体の各頂点へ,線分OA,OB,OC,ODの4本がありこの線分が3つのシャボン膜の境界になります.
(1)Oから正4面体の各頂点に向かう線分同士のなす角度は何度でしょうか?
(2)△OABのような6つの膜が1点で出会うOのような点が必ずできるでしょうか?
(3)正4面体の4つの面の面積合計と,△OABの面積x6とでどちらが大きいでしょうか?
(4)どのようなシャボン膜の形のつり合いが実現するでしょうか?
色々な疑問が起こり難しい問題です.実験してみて推測してみましょう.

 針金の枠が立方体のときは,どのような膜の形になるでしょうか?

実験してみると下図のような膜ができると思います.
このような膜の形ができることを説明してください.

0

理科・実験 フィボナッチと神経生理

1976年,ドイツのRegensburg大学のKurt Fischerは,神経の生理学モデルを研究し,フィボナッチ数の発生をここでも発見した[177].神経繊維に沿って移動するインパルスは,ナトリウムまたはカリウムのイオンに由来し,n>=2の細胞からなる同一の膜貫通孔を通って流れる.微量のカルシウムイオンCa2+が孔に入ると,孔内のナトリウムイオンNa+の流れを止めることができる.
これらのイオンは,細孔の入り口を除いて,それぞれ1つまたは2つの細胞を占有することができ,これらの2つの状態をそれぞれ1あるいは2と標記する.図3.39は典型的な孔の状態で,0と表示したのは空の細胞である.


ナトリウムは,孔のいずれの端でも出入りすることができるが,カルシウムは孔の左側でのみ出入りできると仮定する.その結果,孔内のカルシウムイオンは,この孔を通るナトリウムの流れを妨げる.
ロシアの数学者Andrey Andreyevich Markov (1856-1922)にちなんで名付けられたこのマルコフ確率過程は,ツリー構造で表すことができる.木の頂点は細孔の可能な状態を表し,そのエッジは状態間の可能な遷移を表す.たとえば,図3.40に,5つの空でない細胞を有する孔の様々な可能な状態を示す.
図3.40


ツリーは2種類の頂点で構成されていることに注意せよ.すなわち,右端のセルに1,あるいは,右の2つのセルの中央に2があるものだ. レベル5のすべての状態は後者で,状態の右側にカルシウムが存在するため,ナトリウムイオンの右への移動がもはや実行可能ではない.図3.41に図3.40のツリー骨格が描かれている.これは図2.1のフィボナッチツリーに非常に似ている.いずれの図からも,5つの空でない細胞を有する孔は,レベル5に5=F5個の状態を有することがわかる.
図3.41


一般的に,n個の空でない細胞を有する孔は,レベルnにFn個の状態を有する.これは,レベルnの状態数がフィボナッチ再帰関係を満たすことからわかる.

1963年,カリフォルニア州サンノゼにあるサンノゼ州立大学のS.L. Basinは,”電気ネットワークに関心のある人々まで,我が友フィボナッチから逃れることはできない”[23]と書いた.ここでは,フィボナッチ数が電気ネットワークの研究にどのように現れるか示そう.

0

会議・研修 NPO法人「数学月間の会」ご挨拶

■NPO法人「数学月間の会(SGK)」(理事長岡本和夫)が設立されました.
詳細は新ウエブサイト http://sgk2005.saloon.jp/ をご覧ください.
数学月間の会の会員募集中です.ご支援のほどよろしくお願いします.
問い合わせや会員登録は sgktani@gmail.com 

■数学月間の会とは
数学はあらゆる文化・学術の基盤で,科学,工学,産業,芸術,医学,経済など,社会のあらゆる分野を数学が支えています.しかしながら,一般市民,特に,生徒・学生とその両親は,数学学習を敬遠する風潮にあり,これが数学力の低下をもたらしています.

米国では,1986年4月17日のレーガン宣言により国家的な行事として「数学月間」MAMが開始され,今日に至ります.米国MAMは,数学系の学協会が参加するJPBM(Joint Policy Boad for Maths)が,毎年,社会を反映した数学テーマを選定し,毎年4月に種々の数学イベントを展開し,国民からの事後評価も受けます.皆が知りたい時局の数学を,種々のレベルで学習できるウエブサイトができ,そこにエッセイや論文が集積され,そのテーマの数学を基礎から最先端まで,学生が独習できる優れたガイドになります.MAM期間には,一般から専門家まで,小学生から大学生まで,いろいろなレベルのイベントが全国で展開されます.米国が国家的行事のMAMを決断した背景には,国民の数学力が低下し,米国の産業力も低下するとの焦りがありました.日本も同様な状況にあるものの,国家的行事の数学月間は実施されておりません.

近年,日本でもSTEM(科学・技術芸術・工学・数学)教育が叫ばれていますが,これも2003年に始まった米国のSTEM教育に源を発します.これらの科目の中で統合的に数学を教える試みは良いことですがまだ成功していません.数学月間の視点はSTEM教育へも貢献できるものと思います.

数学を学ぶ同好会,塾,講習会,講演会などは種々あります.これらも重要であるのは言うまでもありませんが,我々の目指す「数学月間」活動は,このような数学同好者の内部にとどまる活動ではありません.数学がかかわるあらゆる分野を横断して数学を紹介する数学外の一般市民に向けた活動です.

一般市民,学生,生徒に対し,数学が社会を支えている事例を,わかり易く啓蒙する事業を行い,数学への社会的共感を獲得し,社会に数学文化を普及させ,社会の発展に寄与することを目的とする市民の活動です.どうぞ活動にご協力ください.

日本の数学月間は,2005年に日本数学協会が7/22-8/22を数学月間と定めたことに始まります.任意団体「数学月間の会(代表;故片瀬豊)」は,2005年の発足以来,ボランティア・ベースながら,毎年,数学月間の初日7/22に,数学月間懇話会を開催し,計37件の啓蒙的な講演を一般市民に対し実施することで,数学啓蒙活動をこの時期に集中し,数学の重要性を社会にアピールしてきました.このような数学月間活動は,米国MAMのように国家的行事として行うべき性質のもので,個人寄付金とボランティア・ベースで行う現状には限界があります.数学同好会ではなく,活動を社会に波及させるためには,NPO法人格を得た「数学月間の会」が,数学の内部にとどまらず社会の諸分野に横断的に呼びかけ活動し,「社会と数学の架け橋」になることが必要でした.

4月から新しい「数学月間の会」の会員になり,一緒に活動しませんか.

0

美術・図工 伝統文様の練習問題

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.26] No.260
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
周期的な2次元平面の互いに独立な並進ベクトルは2方向とれます.
これら2本の並進ベクトルが挟む平行4辺形を単位胞といいます.
並進ベクトルの組み(単位胞の形)を対称性で分類したものがブラベー格子です.
2次元のブラベー格子には,図に示す5種類があります.
そして,それぞれに対応する格子の図も掲載しておきました.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

さて,以下に伝統文様を10種挙げました
図の中に赤色ベクトルで,並進の周期を書き込んだ図もあります.
1.書き込んでない図にも赤色ベクトルを書き込んでみましょう.
赤色ベクトルの選び方はいろいろ可能ですが,
単位胞の形(赤色ベクトルで囲まれた平行4辺形)が
A正方形,B長方形,C120°の菱形,D任意角度の菱形, 
の4種類のどれかにあてはめるようにとれます.
2次元のブラベー格子の5種類のうち,一般形の平行4辺形に属する伝統文様は,
ここの例には挙げていません.
2.それぞれの伝統文様は,A,B,C,Dのどのタイプに属するでしょうか.
3.伝統文様のいくつかを,どこかで見たことがあるでしょうか.
私は立涌を壁紙で見かけます.

0

直線定規とコンパスを繰り返し用いた作図

■ 円に点Bを通る2直線が交差しているときに,方冪の定理が成り立ちます.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

■2つの長さの加法,減法は簡単です.以下の図をご覧ください:

 

 

 

 

 

 

■結局,直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは
加法,減法,乗法,除法,開平です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
例えば,立方根は作図できません(この証明は難かしいのでスキップ).

 

 

 

 

 

 

 

 

0

万華鏡のクイズ

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2018.11.06] No.240
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
私は色々な万華鏡を作っています.
今日は万華鏡のクイズを2つ載せますので,お考え下さい.
(1)2枚鏡(ブリュースタ)の万華鏡
Q:
下の2つの映像は,2枚鏡のある万華鏡を観察したものです.
ワンドの中のガラスくずの流れとともに,映像はいろいろに変化しますが,映像の対称性はいつも同じです.
そのわけは,生じる映像にはいつも万華鏡の鏡室の対称性が反映されるからです.
それでは,この万華鏡の2枚鏡の交差角度は何度でしょうか?

 

 

 

 

 

 

 

 

  (2)正多面体の見える万華鏡
Q:
次の写真は万華鏡の映像です.正8面体(緑)と正6面体(青),正4面体(赤)が同時に見えています.
これは,3枚鏡の万華鏡ですが,どのような鏡の組合せでしょうか?

 

 

 

 

 

 

 

 

 

ーーーーーーーーーーーーーーーーー

  A 

(1)

 

 

 

 

 

 

 

(2)
正8面体(緑)と正6面体(青)の対称性は同じなので,空間中の非対称領域(3枚の鏡が囲む空間=鏡室)は同じですが,
正4面体(赤)の非対称領域はこの2倍の大きさです.
したって,これらの3つの正多面体が同時に生じているということは,
正4面体の非対称領域がこの万華鏡の鏡室であることが必要です.
万華鏡の3枚の鏡は,それぞれ,青,黄緑,赤紫で示した平面で,この3平面はO点で交わっています.
左図は正4面体の鏡室,右図は正8面体と正6面体の鏡室です.

 

 

 

 

 

この万華鏡は,正4面体の鏡室の場に,一番右の図に示すように物体(緑)を置いたり,
光の線分(赤,青)ができるようにしてあります.

0

美術・図工 小梁(OSA工房)のパズル★

この透明な立方体の箱(単位胞)が周期的に並ぶと,ページ65の空間の充填ができます.結晶はこのように単位胞が並んだ周期的構造です.
小梁(OSA工房)のパズルは,単位胞だけ取り出して充填させるパズルです.

   図1                   図2                  図3
図1は,透明な単位胞の底面中央に正8面体の上半分が見える様子です.この正8面体の残りの下半分は,見えませんが立方体の底面を突き抜けて存在します.
周期的な空間ですから,透明な箱(単位胞)の天井と床は同じもので,天井から箱内に向かって存在とイメージすると良いです.
単位胞内の底面の4隅には正8面体の1/8が見えます.この正8面体の残りの部分は,周期的な空間なので,図2のように立方体の壁を突き抜けて存在します.
図1のように並んだ正8面体の間隙には正4面体が4つ入ります(図3).

   図4                   図5                 図6

透明な単位胞の6つの面に,半割の正8面体を図4のように貼りつけました.単位胞内に6つの半割正8面体が入っています.単位胞の中心で,これら6つの半割正8面体の頂点が出会い,正8面体は稜を共有してつながります.
単位胞の中に含まれる正8面体の数は,半割正8面体6個と単位胞の8つの隅に1/8の正8面体がある(6×1/2+8×1/8)ので4個です.
図4をよく見ると,単位胞の内部にあるこの多面体(注)には8個の正4面体の間隙があることがわかります.従って,このような単位胞が繰り返される空間は,充填される正8面体と正4面体の個数比は1:2です.
注)半割の正8面体6つと,正4面体8つでできる多面体は,半正多面体{3,4,3,4}です.

0

会議・研修 物理から数学を作る

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.05] No.257
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
皆様いかがお過ごしでしょうか.ひな祭りも過ぎ春がもうすぐです.
ご存知の方も多いと思いますが,yahooブログが今年で閉鎖されることになりました.
私は,数学と社会の架け橋<数学月間>を,yahooブログに書き続けていますが,
現時点で延べ47,917人の訪問者があるし,お友達もできて,この縁を続けたいと
対策を考えています.数学月間の会は,https://sgk2005.org/にホームページがあります.
加えて,新しいサイトhttp://sgk2005.saloon.jp/ を準備中で,そこにはブログのコーナーも設け
yahooブログもここに集積するつもりです.
しかし,現在,要の役割をしているyahooブログの地位は捨てがたいので,これに代わる
新しいブログサイトも何処かに開設しお知らせしますので,皆様との縁が続きますよう願います.
そのようなわけで,要のyahooブログが今移動準備状態で,
メルマガで使う図はyahooブログからのリンクで入れていましたので
本号のメルマガ257号は,文章だけとなります.

■液体のジュースの缶と凍らせたジュースの缶があり,斜面を転がしたらどちらが速いでしょうか?
質量は同じで,直径の大きい缶と直径の小さい缶があり,斜面を転がしたらどちらが速いでしょうか?
このトッピックスは,中西達夫著の微積とラグランジアン(工学社)に載っています.
ネットを検索してみると,これらの話題は各所に見受けられます.
中西氏の本では,このような物理(運動)の実験から,問題を解くための微積などの
数学概念手法を説明します.その数学理論が生まれた場に立ち戻り数学を作ろうというのが
数学月間流の数学理解の仕方です.大変読みやすく興味深い本なのでお勧めします.

表題の物理の問題は,缶が斜面を転がる運動は,重心の移動と重心の周りの回転の
両者の重ね合わせと考えます.斜面の上端で静止状態の持つ位置エネルギーが
重心移動の運動エネルギーと重心周りの回転運動のエネルギーに変わります.
すなわち,回転運動のエネルギーに費やされる分だけ,
重心移動の運動エネルギー(1/2)mv^2は小さくなります.
回転させにくい程,回転に多くのエネルギーを使います.
缶の中が凍っている方が回転させにくいし,半径の大きい方が回転させにくいので,
液体の入った缶の方が速く転がり,直径の小さい缶の方が速く転がります.

0

会議・研修 雷に打たれた少女の誤算

━━━━━━━━━━━━━━━━━━━━
数学月間SGK通信 [2019.03.12] No.258
<<数学と社会の架け橋=数学月間>>
━━━━━━━━━━━━━━━━━━━━
数学への興味を喚起するさまざまな活動が米国では行われてきました.
教授法の優れた教師の表彰や数学啓蒙の優れた記事を書いたジャーナリスト表彰も行われています.
このたび,Math + Literature = 2019 Mathical Book Prize Winners!の発表がありました.
数学科学研究所(MSRI)は,2-18歳の若者向けの優れた数学文学書(フィクションとノンフィクション)
の2019年の受賞者を発表しました.今年で5年目だそうです.
数学+文学=the Mathical.対象学年別グレード分けがあります.

■3-5学年用の受賞作品
The Miscalculations of Lightning Girl by Stacy McAnulty(Random House Children’s Books)
「雷に打たれた少女の誤算」を紹介します:

12歳のルーシー・キャラハンは4年前に雷に打たれて気を失い心臓が止まったのですが,
アパート管理人が除細動器を使い心臓が再び動き出し救われました.
手をやけどしただけで,変わりないようでしたが,実は数学の天才になっていたのです.
突然,難しい計算をすることができました.医師は後天性サバント症候群と診断しました.
ルーシーの脳は落雷によって損傷を受け,彼女の左脳の一部が閉鎖され,右脳が余計に働くようになった.
ルーシーは高度な数学的計算,暦の数学,数学的パターンの認識を行うことができ,
あらゆる数字が色や形を持つものと認識するようになったといいます.
その他,おかしな習慣がルーシーにできました.細菌を恐れ、触れるあらゆる表面を消毒するようになり,
座る前に3回座る立つを繰り返す儀式が必要になった.
また,何でも読む前に,そのすべての単語を数えることが必須になりました.
彼女の奇妙な習慣のために,ルーシーはホームスクールで学びます.
そして今12歳で高校レベルを通過しました.彼女は大学に進学したいのですが,
彼女の母は大学に行くには若すぎると思っています.
ルーシーの伯父さんも,公立学校に通わせるという母に賛成し,ルーシーは7年生に入学します.
ルーシーは中学校に行きたくはなく大学に行きたい.彼女は自分がオンラインですべてを行えると信じています.

ルーシーは中学で2人の友人を作ります.
ミュージカルが大好きでルーシーの奇妙さに興味をそそられるウィンディ・シットンと,
写真が大好きな男の子リーバイ・ボイドです.ルーシーはからかわれて,「クリーニングレディー」とあだ名されます.
彼女は自分の数学の天才を隠すために,テストでわざと間違えるべき質問の数を計算したりもしす.
ルーシーは自分の数学の能力を使って,ウィンディとリーバイのグループをクラスプロジェクトで支援し,
2人のクラスメートとの友情が深まりますが,ルーシーは自分が数学の天才である秘密は守れると思っています.
しかし、ルーシーは数が特定の事を予測するのを助けることができるが,
人生のすべてが数学方程式で決定されているわけではないことを認識し始めます.
ルーシーは彼女が信頼と友情の意味について多くの誤算をしていることを発見します.

■6-8年生用には,「アポロ8号の宇宙飛行士と先駆的な女性数学者の感動的な実話」が受賞しました.

0

理科・実験 パイレックスガラス★

シリカガラスSiO2の軟化点は1700°Cと高温です.ガラスには明確な融点はありません.初めから乱れた構造ですから液体状態の個体ともいわれます.固体での変形が起こるのは軟化点~1900°Cあたりまでで,それ以上の温度では液体になります.シリカの正4面体ネットワーク中の所々にCaイオンやNaイオンが入ったものが,ソーダーライムガラス(青板ガラスとも呼ばれる)で,ガラスの融点も軟化点も下がり成型が容易になります.しかし,Naの熱振動振幅は大きく,ガラスの熱膨張率は大きくなります.ホウケイ酸ガラスは,ホウ素Bを添加したガラスで,ナトリウムNaの量を減らせるので,熱膨張率を小さくできます.これがpyrexパイレックスガラス(Corningの商標)で軟化点は820℃位で,Nonexという非膨張ガラスの処方も開発されました.パイレックスガラスは,キッチンのベーキング皿にも,温度計にも,ビーカーなど理化学機器にも,1949年に完成したパロマーのヘール望遠鏡の巨大鏡(回転放物面)にも使われています.この巨大鏡はパイレックスガラスの直径5mのガラスのキャストディスクで20トンもあります.この巨大なガラスのキャストディスクの製造では,アニーリング・オーブンに入れて10か月もかけて徐冷したそうです.これを現場に運び凹面(回転放物面)に研磨しました.
しかし,2008年3月14日に パイレックス・ロール板が生産中止をコーニング社は決めました.パイレックスと言えば耐熱ガラスの代名詞で,理化学機器にも使われていますが,望遠鏡用の 大きなガラスも作らなくなりました.どうなることか心配です.コーニング社の製品は,スマートフォン用のGorillaGlassというカバーガラスやエレクトロニクス用の薄い強化ガラスにシフトしたようです.

コーニングガラス博物館は面白そうです.

0

美術・図工 立方体を2倍にする★

昔,ギリシャのデロス島で疫病が横行しました.神の怒りを鎮めるために預言者の言により,アポロンの立方体の祭壇を2倍の大きさにしなければなりません.長さが2倍では体積が8倍になってしまいます.体積を2倍にするには,現在の立方体の祭壇の長さを1とすると,新しい祭壇の1辺の長さは2の3乗根=1.259921・・・にしなければなりません.直線定規とコンパスを有限回使ってこの長さを作るというのがこの難問です.プラトンも考えました.実は,2の3乗根の作図は,直線定規とコンパスでは作図不可能でした.この他に,任意の角度の3等分.与えられた円と同じ面積の正方形の作図も直線定規とコンパスを有限回使って作図することが不可能です.いろいろな人々が挑戦しましたが出来ませんでした.これらの作図が絶対不可能であることが証明されるまでに2,000年もの年月を要しました.
■直線定規とコンパスだけを有限回繰り返し用いて作図できる長さは,
与えられた長さの 加法,減法,乗法,除法,開平(平方根) です.
開平を繰り返せは,2のべき乗根(4乗根,8乗根,...)は作図できますが,
立方根(3乗根)は作図できません.
従って,有理数が与えられたとき,それらの加・減・乗・除と開平の操作を有限回繰り返して得られる数(a+b√cの形の数)が,直線定規とコンパスで作図できる数字です.

参考:
長さの加法,減法はすぐわかると思います.
乗法,除法,開平の作図法は,方冪の定理(以下の図を参照のこと)を応用します.
https://blog-001.west.edge.storage-yahoo.jp/res/blog-09-2d/tanidr/folder/572283/50/18283150/img_0_m?1539587485

0

家庭科・調理 フィボナッチ数列の出現例

1ドル札と2ドル札のみを使い,n(整数)ドルを払う方法の数B(n)を求めましょう.

1.n=1のとき:2ドル札は0枚で,1ドル札1枚出すしか方法はありません:
  方法{1}のみで,方法の数はB(1)=1
2.n=2のとき:2ドル札0枚なら{1,1},2ドル札1枚なら{2}で,
  方法の数は B(2)=2
3.n=3のとき:2ドル札0枚なら{1,1,1},2ドル札1枚なら{2,1},{1,2}で,
  方法の数は B(3)=3
4.n=4のとき:2ドル札0枚なら{1,1,1,1},2ドル札1枚なら{2,1,1},{1,2,1},{1,1,2},2ドル札2枚なら{2,2}で,
  方法の数は B(4)=5
(ただし,同じ種類の札は区別していません)

これらの結果を考察すると,
B(n)はB(n-1)の方法に1ドル追加したものと,B(n-2)の方法に2ドル追加するものとの和になる.
2ドル追加の方法に{1,1}を追加する方法があると思う人がいるかもしれないが,
追加する2つの1のうちの始めの1は,B(n-1)個の方法に繰り込まれ,すでに存在し,それに1を追加することは,すでに前者の項に含まれている.ゆえに.
B(n)=B(n-1)+B(n-2)
かくして,この方法でnドル支払う方法の数の再帰的な定義が得られました.
これはフィボナッチ数列
1,2,3,5,8,13,21,34,55,・・・・・
の定義と同じです.

1,2,3の3つの数字を和の構成因子として,正の整数nを表現したとき,異なる表現数をb(n)とする.以下は例です.
1.1=1 b(1)=1
2.2=1+1=2 b(2)=2
3. 3=(1+1)+1=(2)+1=3 b(3)=3
4. 4=(1+1+1)+1=(2+1)+1=(3)+1=2+2 b(4)=4
5. 5=(1+1+1+1)+1=(2+1+1)+1=(3+1)+1=(2+2)+1=2+3 b(5)=5
6.6=(1+1+1+1+1)+1=(2+1+1+1)+1=(3+1+1)+1=(2+2+1)+1=(2+3)+1=3+3 b(6)=6
7.7=(1+1+1+1+1+1)+1=(2+1+1+1+1)+1=(3+1+1+1)+1=(2+2+1+1)+1=(2+3+1)+1=(3+3)+1=3+2+2 b(7)=7

n-1の展開表現の各々に1づつ加えてnの展開表現を得るが,これに加えて,新しい表現が1つできる.従って,
b(n)=b(n-1)+1=n

0

万華鏡映像2

万華鏡の映像は鏡映群にすぎないと数学者は思っているようだが,実は,群よりもっと複雑な代数系であるところが面白い.
理想化した状況で作った数学は適用範囲が広い.これに対し,複雑な状況下で作った数学は,あまり使われない.骨折り損のくたびれ儲けなのだが止められない.自然法則を数学は記述できるが,自然法則は数学に従はないところが面白い.

 

 

 

 

 

 

 

 

 

これらの万華鏡造像を鏡映群で記述すれば,どちらもmに過ぎないが,それではあまりにもつまらない.群では表現できない様々な規則性があるではないか.

 

■万華鏡映像をお楽しみください.動画だと良いのですが大きいのでスチル写真です.

 

0

美術・図工 対称性から明らかである


■テープをこのように結ぶと正5角形ができることが知られていますが
なぜでしょうね.証明してください.


 

 

 

 

 

 

 

 

 

右の図は正5角形の外形と内部の対角線でできる星形が見えます.
対角線と正5角形の辺は平行で,赤く着色したものがテープであり,
テープの一方の端が対角線の星形を,もう一つの端が5角形の辺を
交互に入れ替えながら描くことが,軌跡を辿ってみれば確かめられます.
私は,正5角形であることの証明をどのようにしたらできるか
まだ考えたことがありません.案外難しそうです.
どうぞ良い証明ができたらここで教えてください.
いずれにしても,正5角形になることは,対称性から明らかです.
「この5角形の図形には,5回回転対称性があるので,この5角形は正5角形だ」
と言うのは如何ですか.一目でこの5角形は5回回転対称だとわかります.
これなら面倒なことを言わずにすむので,対称性は非常に強力な概念です.
このような論法をいろいろな所で使いたいのですが,乱暴ですか皆様どう思ますか.
■紙を2つ折りにすると折り目が直線になることを証明してください.
これも当たり前なのに,証明が面倒な問題です.
この問題に対する私の解答は,「対称性から明らかである」と言っておきます.

0

家庭科・調理 笑い話


こんなクイズを何処かで聞いたことがありませんか?1人10ドルのホテルに3人が止まり,30ドル支払いました.ホテルフロントが5ドル値引きしてくれ,女中を介して返金してきましたが,途中で女中が2ドル抜いたので,3人に渡ったのは1ドルづつです.結局,それぞれ9ドルづつ支払ことになり,全員でホテルに27ドル,女中が2ドル持っています.残りの1ドルはどこに消えたのでしょうか?
ややっこしくて変な気分ですが,お判りでしょう.27ドルと2ドルを足す意味は何でしょうか?
このような計算の笑い話は,落語のツボ算にも出てきます.買ったツボを返品するときに,支払った金額と返品するツボの値段を足してしまうのです.
数学の方程式を作るときに,左辺に足すか右辺に足すかよく意味を考えて式を作らないと,このようなとんでもないことになります.
落語の時そばでは,そば代金の16文を数える間に,8のときに時間(八つ)を混ぜ込むことで,1つスキップし金額を1文ごまかします.与太郎が真似をするときは,時間が(四つ)で,逆戻りし損をしてしまいます.これは,お金と時の呼び名という単位が異なり足すことのできないものを足すトリックです.我々ももう少し複雑な問題ではありますが.方程式を立てるときに単位の異なるものを足してしまうような式を立ててしまうことがよくあります.笑い話ではすみません.
話のついでにもう一つ,落語に出てくる不正な計算について述べましょう.落語花見酒では,酒だるを担いで売りに行く2人の間で,お金をやりとりしているうちに,お酒が全部なくなってしまう話です.これは売上金の公金横領に当たるわけですが,お金はお金でも,公金と自分の金というカテゴリーの違うものの区別ができなかったために起きた笑い話です.
最初の例に戻ると,ホテル取り分は25ドル,女中取り分は2ドル,客支払い分は3x9=27ドルで何の不思議もありません.

■読者の方から「三方一両損」の話が出ましたので,追加しておきます.
江戸っ子の職人が3両入りの財布を拾って,落とし主に届けると,落とし主はいらないと意地を張る.どちらも江戸っ子らしくていいですね.
大岡越前守が,1両出して4両にし,2両づつ分けさせる名裁きをします.
拾ったまま届けず手元に置けば3両ある.届けてもらって受け取っておけば3両ある.
奉行も関わらなければ1両出さずに済む.しかし,結局3人とも1両ずつ損をしたというのです.

0