結晶学用語集(3)ー空間群の拡張ー

投稿日時: 2022/01/31 システム管理者

20. ヘルマン=モーガンの記号 [Hemann-Mauguin notation: символы Германа — Могена]
 結晶の点群,空間群,ならびにそれらに含まれる対称要素の記述に用いられる記号. 点群の対称要素は次のように記される.回転軸;回反軸は,その次数に応じて,$$1,2,3,4,6$$; $$\bar{1},\bar{3},\bar{4},\bar{6}$$と記される. ただし,回反軸$$\bar{2}$$は鏡映面になるので$$m$$と記される.また,$$\bar{1}$$は対称心と呼ばれる. さらに,上記の対称要素のうちのただ一つから生成される点群にもその生成元と同一の記号が用いられる.複数の対称要素の組み合わせにより生成される点群の記述は,生成元となった対称要素を列記して行なうのが基本方針であるが,わかり易くするために生成元以外の対称要素を付け加えることがある.回転軸$$n$$ に対し垂直な鏡映面$$m$$がある場合は$$n/m$$,回転軸$$n$$を含む鏡映面$$m$$がある場合は$$nm$$と記される. また,主軸となる回転軸を第1項に,これに直交する副軸を第2項に記す. これら2本の回転軸により生成される対称軸が新たな類を作るなら,これを第3項に記す. 例えば,点群$$222$$の第1項は$$c$$軸方向の2回軸,第2項は$$a$$軸方向の2回軸,第3項はこれらから生成された$$b$$軸方向の2回軸である.点群$$422$$も同様で,第1項は$$c$$軸方向の主軸,第2項は$$a$$軸方向の2回軸,第3項はこれから生成された$$\left[ 1,1,0 \right] $$方向に生じた2回軸である.点群$$32$$では,$$c$$軸方向の主軸とこれに直交する副軸としての2回軸が示されているが,これらから生成される3本の2回軸は,すべて副軸と同一の類に属するので,第3項は記入しないのである.点群$$4/m2/m2/m$$の例では,各回転軸に垂直な鏡映面が存在することが示されている(この点群は簡単に$$4/mmm$$と書かれることが多 い).立方晶系の点群の表示では,第1項と第2項の対称要素は互いに直交していないこ とに注意せよ. 空間群の記述では,空間格子の型を点群記号の前に表示する. また,空間群では,点群要素中の回転軸や鏡映面をらせん軸や映進面に拡張したものも現れる.例えば,空間群$$P2_{1}/c$$は,$$P$$格子をもち,2回らせん軸とそれに垂直な$$C$$映進面が存在す ることを表示している.

21. シェンフリースの記号[Schoenflies' symbols: символы Шёнфлиса]
  結晶の点群,空間群,それらの対称要素の記述に用いられる記号. 結晶点群の記述は次のように行なう. 
(1) $$n$$回軸のみにより生成される巡回群を$$C_{n}$$と記す.
(2) 主軸の$n$回軸と,これと直交する2回軸の副軸とにより生成される4元群$$D_{2}$$2は$$V$$と記されることもある.
(3 ) 正4面体群を$$T$$,正8面体群を$$O$$と記す .
(4) 対称心を有する群には,添え字$$i$$をつけ$$C_{ni}, D_{ni}$$などと記す.特に,対称心の みから生成される反転群は$$C_{1i}$$ではなく$$C_{i}$$と記す.
(5) 主軸と直交する鏡映面を有す る群は$$h$$ (horizontalの意)を添えて$$C_{nh} , D_{nh}$$などと記す.特に,鏡映面のみから生成される点群は$$C_{s}$$と記す.
(6 ) 主軸を含む鏡映面を有する群は$$v$$ (verticalの意)を添えて$$C_{nv}$$と記す.
(7) 主軸と副軸を含む鏡映面を有する群は$$D_{nv}$$,主軸を含みかつ副軸間を2等分するような鏡映面を有するものは$$d$$(diagonalの意)を添えて$$D_{nd}$$と記す.
(8 ) 4回回映軸を有する群は$$S_{4}$$と記す.
(1)~(8 )の規則に従って結晶点群を記すと重複するものがでてくる.例えば,対称心を含む群にうち$$C_{2i}=C_{2h}$$,$$C_{4i}=C_{4h}$$,$$C_{6i}=C_{6h}$$,$$D_{2i}=D_{2v}$$,$$D_{3i}=D_{3d}$$,$$D_{4i}=D_{4v}$$,$$D_{6i}=D_{6v}$$,となるので,$$i$$を添えて記述するものは$$C_{i}$$と$$C_{3i}$$だけで他は使われない.結晶点群ではないが,分子の対称性で 重要な点群に$$C_{ \infty v} , C_{ \infty h}$$などがある. 
  空間群の記述では,同一の点群から導かれた空間群は,その点群の右肩に番号を付け区別する.例えば,$$O_{h}^{1} , O_{h}^{2} , \cdots , O_{h}^{10}$$などである. Schoenfliesの記号は点群の記述 としては簡明であるので,分子の対称性や分光学などでは広く用いられている. しかし,空間群の記述としては十分な情報が得られないため,結晶学ではヘルマン=モーガンの記号から発展した国際記号が広く用いられている. 

22. 回転群 [rotation group: группа вращений]
  1点のまわりの回転操作の全体が作る群.これは,運動群の部分群でもある.1点のまわりの回転は直交行列$$A$$で表現される. 3次の直交行列全体の集合は直交群$$O_{3}$$をなしている.純粋な回転は,$$\left| \begin{array}{@{\,} c @{\, } }A\end{array} \right| =+1$$なる直交行列$$A$$で表現され,反転や鏡映は,$$\left| \begin{array}{@{\,} c @{\, } }A
\end{array} \right| =-1$$なる直交行列$$A$$で表現される.普通,回転群と呼ばれるものは,純粋回転のみからなり,反転や鏡映も含めたものは広義の回転群と呼ばれる.結晶点群や正多面体群(プラ トンの正多面体=正4, 6, 8,12, 20面体での合同変換群)は,広義の回転群の離散な部分群である.

23. 点群 [point group: точечная группа]
 結晶点群[crystallographic point group: кристаллографическая точечная группа]
  空間群の一点を不動にするような対称操作の組み合わせが作る群である.空間の一点 が不動となるためには,全ての回転軸はこの点で交差する必要がある. さらに,回転軸が鏡映面をよぎる場合も交点はこの不動点でなければならない.空間群は無限に繰り返される周期構造での対称操作の組み合わせが作る群であるので,空間群には並進操作が存在するが,点群には並進操作はない. 点群は分子などの有限図形の対称性の記述に用いられる.点群では$$ \infty $$次までのすべての次数の回転軸が存在し得る. たとえば,プラトンの正多面 体の1つ正20面体を記述する点群では5回軸が現れる. しかし,結晶のように空間に周期をもつ構造で許される回転軸の次数は,1,2 , 3 , 4, 6に限られる. 準結晶には巨視的な5回対称軸など現れるが,準結晶(ペンローズの空間タイリング)は,正則ではあるが,周期 的な構造ではない.回転軸にこのような制限を設けて得た点群は,結晶点群といわれ32種 (3次元空間で)存在する.空間群$$\mit\Phi $$中の並進群$$T$$は,正規部分群であるので,商群$$\mit\Phi /T$$ が作れるが,これは結晶点群$$G$$と同型になる.点群はHermann-Mauguinの記号か ら発達した国際記号や,Schoenfliesの記号で記述される. 
  結晶点群での対称操作は幾何学的空間での変換であるが,幾何学的変換と同時に図形の超幾何学的性質(例えば“色”)をも変換するような対称操作を導入すると,黒白結晶点群,色付結晶点群などが得られる. これらに対して,結晶点群のことを,特に,古典結晶点群ということがある.

24. クリプト•シンメトリー[crypto-symetry: xpiOTOcniteTpiii]
  crypto-というのは“隠れた”という意味の接頭語で,幾何学的空間には現れない図形の超幾何学的性質("色''と呼ぶことにする)の対称性まで含めたものをクリプト・ シンンメ トリーという.結晶構造の対称性を記述する空間群は幾何学的空間の対称操作が作る群である.結晶構造のもつ超幾何学的性質(スピン座標等で,それらを代表して”色”と呼んでいる)の変換も幾何学的変換と同時に行なうような,拡張された対称操作は, 一般化された空間群[ザモルザエフ群,黒白空間群,色付空間群]を与える.

25. 色付空間群[colored-symmetry space groups:npocrpaicTBeHiHe rpynis UBRTHQ頁 cineTpis, SenoBciHe rpynnw]

  結晶構造のように空間に周期をもつ構造の対称性は,空間群の一つ$$\mit\Phi $$で記述される. 結晶空間の各点に一つの超幾何学的な性質(これを''色’'と呼んでいる)を付加し,幾何学的変換(空間群の対称操作)と同時にその空間の超幾何学的な性質をも変換するような 一般化された対称操作,$$g^{(\varepsilon )}=\varepsilon \cdot g=g \cdot \varepsilon $$を導入する. ここで,$$g$$は空間群の対称操作,$$\varepsilon $$は性質空間にのみ作用する変換である.このような一般化された対称操作が作る群を色付空間群という. 結晶空間の各点に付加する性質のとり得る状態の数は$$P$$で記す. 特に,$$P=2$$(例えば,結晶空間に$$+, -$$の符号を付加する)のときには,黒白空間群(シュブニコフ群)と呼ばれる. 一般に,$$P$$色の色付空間群(ベーロフ群)は次のようにして得ら れる. 色付空間群の一つ$$ \textsl{Б}^{(P)}$$で記述される構造は,もし,色の区別ができないフィルタ ーを通して見るとすれば,何らかの空間群で記述されるべきである.これは,と同 型な$$\mit\Phi $$が存在するということである.次に,$$ \textsl{Б}^{(P)}$$中の色を変えない対称操作の集合$$A$$は,$$ \textsl{Б}^{(P)}$$,$$\mit\Phi $$の共通の部分群で,かつ正規部分群($$A$$の指数は$$P$$である)でなければならな い. ここで,商群$$\mit\Phi /A \cong \left\{ 1, g_{2}, \cdots , g_{P} \right\} =G$$が定義されるが,この$$G$$と同型な色置換群$$\left\{ 1, \varepsilon _{2}, \cdots , \varepsilon _{P} \right\} $$を見いだし,$$g$$に結合し,$$\left\{ 1, g_{2}^{(\varepsilon 2)}, \cdots ,g_{P}^{(\varepsilon P)} \right\} =G^{(P)}$$を得て,$$ \textsl{Б}^{(P)}\textsl{/A} \cong G^{(P)}$$となるように,$$A$$を$$G^{(P)}$$により拡大すれば,$$\texttt{\textsl{ } }^{\texttt{\textsl{(P) } } }$$が得 られる. こうして,与えられた空間群$$\mit\Phi $$と同型な色付空間群$$\texttt{\textsl{ } }^{\texttt{\textsl{(P) } } }$$はすべて導くことがで きる.

26.  反対称 [antisynetiry: ainciioieTpiff]
  反対称空間というのは,3次元幾何学的空間に,超幾何学的性質(色または符号と呼 ぶ)の2値(黒白:$$+-$$:など)を付与した4次元空間のことである.この空間での対称性は,反対称点群,反対称空間群(WybHHKOB群)で記述される.時間反転の概念はランダウ(/I•エ HaH.aay)により導入され,反対称群はシュブニコフ(A.B. IBybHHKOB)により研究された. 
反対称演算(反恒等演算)$$1'$$というのは,幾何学的空間内での位置を変えずに色だ け反転する演算である. 幾何学的空間内での変換$$g$$の位数が偶数のときには,変換$$g$$と同 時に色の反転$$1'$$を行なう結合された演算$$g \cdot 1'=1' \cdot g=g'$$が定義でき,黒白群が 得られるが,$$1'$$そのものを対称演算にもつ群は,幾何学的空間内での位置を変えずに色 の反転がおこるので中性群(灰色群)になる. 

27. 結晶群[crystallographic groups: rpiCTajuorpaiqeciHe rpynia]
  空間群の部分群は,すべて結晶群と呼ばれる.空間群自身も,並進を全く含まない結晶点群も結晶群である. この他に,$$n$$次元空間群の結晶群としては,$$k(<n)$$次元の部分空間内にのみ並進周期をもつような結晶群がある. 空間の次元の他に性質空間の次元を追加した一般空間群(クリプト・シンンメトリー)での部分群を指すように拡張することもできる. これらの結晶群の記述には記号$$G_{n}^{t}(l)$$が用いられる. ここで,$$n, t, l$$は,それぞれ,空間の次数,並進ベクトルの張る部分空間の次元,性質空間での反対称の次数である.例えば,$$G^{3}_{3}(0), G_{3}^{2}(0), G_{3}^{1}(0), G_{3}^{0}(0)$$は,それ ぞれ,3次元の空間群,層の対称性,帯の対称性,結晶点群を示す.結局,空間的に何らかの周期をもつた(結晶学的)構造の対称性を記述するということから,これらはすべて結晶群と呼ばれている.図はNeronova(HepoHOBa)(1966)のものに,Wondratshek et.al. (1971)による$$G_{4}^{4}(0)$$の数を追加し修正したもので,結晶群間の相互関係が示され ている.
$${\ttfamily \textrm{\textsl{P } } }$$

28. 4次元空間群 [four-dimensional space groups: {\textless}ieTHpevepHiie npocrpaicTBeHiHe rpyniw] 
  空間的4次元の結晶構造(4次元空間に並進周期をもつ構造)での対称操作が作る群. 高次元における空間群の研究は,1910年BieberbachやFrobeniusが,Hilbertの問題 に関連して,《n次元空間では空間群型は有限種類である》ことを証明して以来,多くの 学者により手がけられ,その一部は導かれていた.最終的な,4次元空間群の全リストは, H. Wondratshek, R. Bulow, J. Neubuser, H. Zassenhaus, H. Brown らにより1973 年 までに導かれた. それによると,4次元の空間群型は,enantiomorph (対掌体)を区別しない立場に立つと,4783種類(3次元の場合は219)あり,enantiomorphを区別する立場 に立つと,4895種類(3次元の場合は230)になる. 4次元空間群の対称操作では,3次元では存在しなかった位数5, 8,10,12などのものも可能となる.

 

(2)⇐続く➡(1)
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー


※この解説は,物理学辞典/培風館(1984)の著者の分担執筆項目より抜粋編集し,専門技術研修「物性と評価技術(中級)」の講座テキスト(©RICOH CO.,LTD.1993)の付録に用いたものを再録した.