koptsik-ch12-7

投稿日時: 02/16 システム管理者

式(12)において,$$G_{i}$$, $$G$$ を,(仮想の)孤立状態にある与えられた物体に対して定義される定常状態の対称性群を表すのに使うことにする.また,相互作用のある状態での同じ対象物の群を$$G_{i}'$$,$$G'$$とする.

固定レベルにおいて,異質な部分系$$G_{i}$$の堆積そのもの(これが,交差$$G=\cap G_{i}$$の対称性を決定する;$$G$$は完全で外部作用から孤立)は,それらの相互作用の十分な原因になるが,この相互作用は,別の構造レベルにおいて要素間の新たな同値関係の確立につながらないとすれば,相互作用の無い対象の交叉$$\cap G_{i}$$の対称群は,相互作用のある交叉$$\cap G’_{i}$$の対称群と同じでなければならない.元の状態が対称的であれば,なぜそれが変化しなければならないのか?系の対称化因子(仮説)は登場しないのだろうか?

$$G'= \cap G_{i}'= \cap G_{i}=G$$                 (14)
相互作用が,要素間の新しい同値関係に導くなら,(11)に従い相互作用系の対称化に出会う:
$$G'= \cap G_{i}' \cup M' \supseteq \cap G_{i} \cup M=G , M' \neq \phi , M= \phi $$                 (15)
関係式(15)は,初期状態(11)の場合にも書くことができ,その場合,$$M \neq \phi $$(対称化因子の集合は空ではない). 
式(12)の初期状態$$ \cap G_{i}$$,または,式(11)の$$ \cap G_{i} \cup M$$が,それ自体で,相互作用の十分な基礎となるのであれば,相互作用によって孤立した系が非対称化されることはないだろう.
(12)において非対称化が起こるためには,非対称化因子が含まれていなければならない(新しい群$$G_{i}$$がその役割を果たす).
しかし,これらの因子が,群の初期の交叉により,孤立系に出現することがあらかじめ決まっているのであれば,なぜこれらの因子が交叉$$ \cap G_{i}$$を縮小するのか?系の非対称化のために (11)では,ある種の相互関係の要素を,集合Mから,排除しなければならない.もし,この合併 が対称的であり,相互作用を決定していたのであれば,合併$$ \cap G_{i} \cup M$$, から対称化因子が抜け落ちるのは何故か?

   これまでの議論は,$$\textbf{十分な理由の原理}$$*に基づき,$$ \textbf{定常状態の保存則の定式化} $$(以下に示す)を導き出した.相互作用の無い状態の対称性は完全に保存される(14).初期状態の対称性は, (増加することはあっても)減少することはない(15).
この観点から,この議論の根底にある前提条件を満たしていれば,$$\textbf{孤立した系の定常状態での対称性は,相互作用下では増大するのみ}$$である.非対称化が起こるためには,$$\textbf{系の孤立を破壊するような系の拡張が必要である}$$ : 固定された系の外部にある物質的舞台のみが,その定常状態の対称性を減少させることができる.

   対称性の保存の法則は,平衡状態の熱動力学や相転移の理論において重要な役割を演じる.次節では,これらの分野におけるいくつかの例について考えてみよう.